In an effort to improve physical properties by introducing polar functionality into the bicyclic pyrimidine gamma-secretase modulator (GSM) clinical candidate BMS-932481, we prepared several oxidative products of BMS-932481. Among the analogs that were prepared, the C-5 alcohol 3 was identified as the predominant metabolite of BMS-932481 found in rat and human liver microsomes. Alcohol 3 was determined to be chemically unstable, leading to the hypothesis that 3 may lead to the production of reactive species both in vitro and in vivo.
View Article and Find Full Text PDFA triazine hit identified from a screen of the BMS compound collection was optimized for potency, in vivo activity, and off-target profile to produce the bicyclic pyrimidine γ-secretase modulator BMS-932481. The compound showed robust reductions of Aβ and Aβ in the plasma, brain, and cerebrospinal fluid of mice and rats. Consistent with the γ-secretase modulator mechanism, increases in Aβ and Aβ were observed, with no change in the total amount of Aβ produced.
View Article and Find Full Text PDFAlzheimer's disease is associated with the accumulation of amyloid-β (Aβ) in the brain. In particular, the 42-amino acid form, Aβ1-42, is thought to play a key role in the disease. It is therefore of interest that diverse compounds, known as γ-secretase modulators (GSM), can selectively decrease Aβ1-42 production without inhibiting the production of other forms of Aβ.
View Article and Find Full Text PDFThis Letter describes the synthesis and structure-activity relationships of a series of furo[2,3-d][1,3]thiazinamine BACE1 inhibitors. The co-crystal structure of a representative thiazinamine 2e bound with the BACE1 active site displayed a binding mode driven by interactions with the catalytic aspartate dyad and engagement of the biaryl amide toward the S1 and S3 pockets. This work indicates that furo[2,3-d]thiazine can serve as a viable bioisostere of the known furo[3,4-d]thiazine.
View Article and Find Full Text PDFTruncation of the S3 substituent of the biaryl aminothiazine 2, a potent BACE1 inhibitor, led to a low molecular weight aminothiazine 5 with moderate activity. Despite its moderate activity, compound 5 demonstrated significant brain Aβ reduction in rodents. The metabolic instability of 5 was overcome by the replacement of the 6-dimethylisoxazole, a metabolic soft spot, with a pyrimidine ring.
View Article and Find Full Text PDFThe amyloid-β peptide (Aβ)-in particular, the 42-amino acid form, Aβ1-42-is thought to play a key role in the pathogenesis of Alzheimer's disease (AD). Thus, several therapeutic modalities aiming to inhibit Aβ synthesis or increase the clearance of Aβ have entered clinical trials, including γ-secretase inhibitors, anti-Aβ antibodies, and amyloid-β precursor protein cleaving enzyme inhibitors. A unique class of small molecules, γ-secretase modulators (GSMs), selectively reduce Aβ1-42 production, and may also decrease Aβ1-40 while simultaneously increasing one or more shorter Aβ peptides, such as Aβ1-38 and Aβ1-37.
View Article and Find Full Text PDFThe pharmacokinetics, pharmacodynamics, safety, and tolerability of BMS-932481, a γ-secretase modulator (GSM), were tested in healthy young and elderly volunteers after single and multiple doses. BMS-932481 was orally absorbed, showed dose proportionality after a single dose administration, and had approximately 3-fold accumulation after multiple dosing. High-fat/caloric meals doubled the Cmax and area under the curve and prolonged Tmax by 1.
View Article and Find Full Text PDFBy targeting the flap backbone of the BACE1 active site, we discovered 6-dimethylisoxazole-substituted biaryl aminothiazine 18 with 34-fold improved BACE1 inhibitory activity over the lead compound 1. The cocrystal structure of 18 bound to the active site indicated two hydrogen-bond interactions between the dimethylisoxazole and threonine 72 and glutamine 73 of the flap. Incorporation of the dimethylisoxazole substitution onto the related aminothiazine carboxamide series led to pyrazine-carboxamide 26 as a very potent BACE1 inhibitor (IC50 < 1 nM).
View Article and Find Full Text PDFThis Letter describes an efficient ring-closing metathesis approach to 2-chloro-4-amino-pyrimido[4,5-c]azepines and 2-chloro-4-amino-pyrimido[4,5-c]oxepines. These chlorides were applied to the synthesis of several potent γ-secretase modulators (GSMs).
View Article and Find Full Text PDFBeginning with a diaminotriazine screening hit, several series of novel, tricyclic gamma-secretase modulators (GSMs) were designed. The SAR of several related series of GSMs is presented, and the in vivo profile of a lead molecule from the series is described.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2015
The synthesis, evaluation, and structure-activity relationships of a class of acyl guanidines which inhibit the BACE-1 enzyme are presented. The prolinyl acyl guanidine chemotype (7c), unlike compounds of the parent isothiazole chemotype (1), yielded compounds with good agreement between their enzymatic and cellular potency as well as a reduced susceptibility to P-gp efflux. Further improvements in potency and P-gp ratio were realized via a macrocyclization strategy.
View Article and Find Full Text PDFExpert Rev Clin Pharmacol
May 2015
Trials missing primary efficacy end points raise the question of whether the choice of drug or the limitations of disease biology were at fault. In some trials, drugs appear not to have achieved biochemical effect thresholds sufficient for clinical benefit. This suggests the need for improved drugs that are more active at tolerated doses.
View Article and Find Full Text PDFAlzheimer's disease is the most prevalent cause of dementia and is associated with accumulation of amyloid-β peptide (Aβ), particularly the 42-amino acid Aβ1-42, in the brain. Aβ1-42 levels can be decreased by γ-secretase modulators (GSM), which are small molecules that modulate γ-secretase, an enzyme essential for Aβ production. BMS-869780 is a potent GSM that decreased Aβ1-42 and Aβ1-40 and increased Aβ1-37 and Aβ1-38, without inhibiting overall levels of Aβ peptides or other APP processing intermediates.
View Article and Find Full Text PDFAlzheimers Res Ther
July 2014
The failure of several potential Alzheimer's disease therapeutics in mid- to late-stage clinical development has provoked significant discussion regarding the validity of the amyloid hypothesis. In this review, we propose a minimum criterion of 25% for amyloid-β (Aβ) lowering to achieve clinically meaningful slowing of disease progression. This criterion is based on genetic, risk factor, clinical and preclinical studies.
View Article and Find Full Text PDFA hallmark of Alzheimer's disease (AD) pathology is the accumulation of brain amyloid β-peptide (Aβ), generated by γ-secretase-mediated cleavage of the amyloid precursor protein (APP). Therefore, γ-secretase inhibitors (GSIs) may lower brain Aβ and offer a potential new approach to treat AD. As γ-secretase also cleaves Notch proteins, GSIs can have undesirable effects due to interference with Notch signaling.
View Article and Find Full Text PDFThis report describes the discovery and optimization of a BACE-1 inhibitor series containing an unusual acyl guanidine chemotype that was originally synthesized as part of a 6041-membered solid-phase library. The synthesis of multiple follow-up solid- and solution-phase libraries facilitated the optimization of the original micromolar hit into a single-digit nanomolar BACE-1 inhibitor in both radioligand binding and cell-based functional assay formats. The X-ray structure of representative inhibitors bound to BACE-1 revealed a number of key ligand:protein interactions, including a hydrogen bond between the side chain amide of flap residue Gln73 and the acyl guanidine carbonyl group, and a cation-π interaction between Arg235 and the isothiazole 4-methoxyphenyl substituent.
View Article and Find Full Text PDFThe synthesis, evaluation, and structure-activity relationships of a set of related constrained diaminopropane inhibitors of BACE-1 are described. The full in vivo profile of an optimized inhibitor in both normal and P-gp deficient mice is compared with data generated in normal rats.
View Article and Find Full Text PDFThe synthesis, evaluation, and structure-activity relationships of a class of γ-lactam 1,3-diaminopropan-2-ol transition-state isostere inhibitors of BACE are discussed. Two strategies for optimizing lead compound 1a are presented. Reducing the overall size of the inhibitors resulted in the identification of γ-lactam 1i, whereas the introduction of conformational constraint on the prime-side of the inhibitor generated compounds such as the 3-hydroxypyrrolidine inhibitor 28n.
View Article and Find Full Text PDFHeterocyclic replacement of the isophthalamide phenyl ring in hydroxyethylamine (HEA) BACE-1 inhibitors was explored. A variety of indole-1,3-dicarboxamide HEAs exhibited potent BACE-1 enzyme inhibition, but displayed poor cellular activity. Improvements in cellular activity and aspartic protease selectivity were observed for 7-azaindole-1,3-dicarboxamide HEAs.
View Article and Find Full Text PDFBackground: Accumulation of amyloid-β (Aβ) peptide in the brain is thought to play a key pathological role in Alzheimer's disease. Many pharmacological targets have therefore been proposed based upon the biochemistry of Aβ, but not all are equally tractable for drug discovery.
Results: To search for novel targets that affect brain Aβ without causing toxicity, we screened mouse brain samples from 1930 novel gene knock-out (KO) strains, representing 1926 genes, using Aβ ELISA assays.
During the course of our research efforts to develop a potent and selective γ-secretase inhibitor for the treatment of Alzheimer's disease, we investigated a series of carboxamide-substituted sulfonamides. Optimization based on potency, Notch/amyloid-β precursor protein selectivity, and brain efficacy after oral dosing led to the discovery of 4 (BMS-708163). Compound 4 is a potent inhibitor of γ-secretase (Aβ40 IC50 = 0.
View Article and Find Full Text PDFAn area of current research in Alzheimer's disease (AD) is the biosynthetic pathway of amyloid beta peptides (Abeta) via consecutive proteolytic cleavages of the amyloid beta precursor protein (APP) by BACE and gamma-secretase enzymes. APP is first cleaved by BACE to form a C-terminal fragment APP-betaCTF, or also called C99, which then undergoes further cleavage by gamma-secretase to form Abeta. Inhibitors of gamma-secretase have been observed to yield a so-called 'Abeta rise' phenomenon whereby low inhibitor concentrations result in an increase in Abeta levels while high inhibitor concentrations result in lower Abeta levels.
View Article and Find Full Text PDFA series of N-((2S,3R)-1-(3,5-difluorophenyl)-3-hydroxy-4-(3-methoxybenzylamino)-butan-2-yl)benzamides has been synthesized as BACE inhibitors. A variety of P2 and P3 substituents has been explored, and these efforts have culminated in the identification of several 1,3,5-trisubstituted phenylcarboxyamides with potent BACE inhibitory activity.
View Article and Find Full Text PDFIn this report we describe a novel radioligand, [(3)H](S)-2-((S)-3-Acetylamino-3-sec-butyl-2-oxo-pyrrolidin-1-yl)-N-[(1S,2R)-1-benzyl-2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenyl-butyramide ([(3)H]BMS-599240), that exhibits robust specific binding in homogenates from cell cultures overexpressing beta-site amyloid precursor protein cleaving enzyme-1 (BACE1). Radioligand binding exhibited high affinity, K(d)=2 nM, commensurate with its inhibitory potency against BACE1. Inhibition of radioligand binding in the presence of a range of different BACE1 inhibitors exhibited the same rank order of potency as for inhibition of BACE1 enzymatic activity.
View Article and Find Full Text PDF