The Yap1 oxidative stress signal transduction pathway found in Saccharomyces cerevisiae is redox-regulated. We have examined the thermodynamic basis of the disulfide/dithiol couples that are involved in the regulation of this pathway. The oxidized form of the Yap1 redox domain (Yap1-RD) fragment, derived from the Yap1 transcription factor, contains two disulfide bonds, one between Cys303 and Cys598 and one between Cys310 and Cys629.
View Article and Find Full Text PDFThe 5'-adenylyl sulfate (APS) reductase from the marine macrophytic green alga Enteromorpha intestinalis uses reduced glutathione as the electron donor for the reduction of APS to 5'-AMP and sulfite. The E. intestinalis enzyme (EiAPR) is composed of a reductase domain and a glutaredoxin-like C-terminal domain.
View Article and Find Full Text PDFAPS reductase from Pseudomonas aeruginosa has been shown to form a disulfide-linked adduct with mono-cysteine variants of Escherichia coli thioredoxin and Chlamydomonas reinhardtii thioredoxin h1. These adducts presumably represent trapped versions of the intermediates formed during the catalytic cycle of this thioredoxin-dependent enzyme. The oxidation-reduction midpoint potential of the disulfide bond in the P.
View Article and Find Full Text PDFAPS reductase from Pseudomonas aeruginosa has been shown to contain a [4Fe-4S] cluster. Thiol determinations and site-directed mutagenesis studies indicate that the single [4Fe-4S] cluster contains only three cysteine ligands, instead of the more typical arrangement in which clusters are bound to the protein by four cysteines. Resonance Raman studies in the Fe-S stretching region are also consistent with the presence of a redox-inert [4Fe-4S](2+) cluster with three cysteinate ligands and indicate that the fourth ligand is likely to be an oxygen-containing species.
View Article and Find Full Text PDF