Using Nogo antibodies with defined binding specificity, Nogo-B, but not Nogo-A, was localized on radial glia in the floor plate of mouse embryos. The presence of Nogo-B was confirmed in Nogo-A knockout mice. In explant cultures of embryonic day (E) 11 and E12 spinal cord, blocking of NgR function with antagonist peptide NEP1-40 reduced the crossing of newly arrived commissural axons, resulting in an accumulation of growth cones in the floor plate.
View Article and Find Full Text PDFExpression of Nogo protein was investigated in the optic pathway of embryonic mice by using isoform-specific antibodies Bianca and 11C7, which recognize Nogo-A/B and Nogo-A, respectively. Our previous reports from using antibody N18 have shown that Nogo is localized on the radial glia in the retina and at the midline of the ventral diencephalon in mouse embryos during the ingrowth of retinal ganglion cells (RGCs) axons. This glial-specific localization is markedly different from findings in other studies.
View Article and Find Full Text PDFThe transcription factors Satb2 (special AT-rich sequence binding protein 2) and Ctip2 (COUP-TF interacting protein 2) have been shown to be required for callosal and corticospinal axon growth respectively from subtypes of cerebral cortex projection neurons. In this study we investigated early stages of directed axon growth in the embryonic mouse cerebral cortex, and studied the possible correlation with the expression of Satb2 and Ctip2. Electroporation of an EYFP-expressing plasmid at embryonic day 13.
View Article and Find Full Text PDFThe anatomical association between sensory nerves and blood vessels is well recognised in the adult, and interactions between the two are important during development. Here we have examined the relationship between developing blood vessels and sensory neuronal cell bodies, which is less well understood. We show in the chick that the nascent dorsal root ganglia (DRG) lie dorsal to the longitudinal anastomosis, adjacent to the developing neural tube at the level of the sulcus limitans.
View Article and Find Full Text PDFThe extensive period of retinal ganglion cell (RGC) neurogenesis in the rat is associated with a protracted sequence of arrival of their axons into central targets such as the superior colliculus (SC) (Dallimore et al., 2002). Using in utero 5-bromo-2'-deoxyrudine (BrdU) injections to label early (embryonic day (E) 15) or late (E18 or E19) born RGCs, we now show that E15 RGCs with axons that enter the SC prenatally undergo programmed cell death earlier than late-born RGCs whose axons only reach the SC late in the first postnatal week.
View Article and Find Full Text PDFCell Tissue Res
February 2010
Central neurons lose the ability for axonal re-growth during development and typically do not regenerate their axons following axotomy once they become mature unless given a growth-permissive environment i.e. peripheral nerve graft.
View Article and Find Full Text PDFSchwann cells (SCs) play a major role in the successful regeneration of peripheral nerves regeneration. Here we examined the effects of osteonectin (ON), a major factor secreted by SCs, on survival and neuritogenesis of mouse superior cervical ganglion (SCG) neurons. SC conditioned medium (SCCM) not only promoted the survival and neuritogenesis of SCG neurons at a level comparable to nerve growth factor (NGF) but also doubled the neurite length of NGF-treated SCG neurons.
View Article and Find Full Text PDFWe have investigated the role of Nogo, a protein that inhibits regenerating axons in the adult central nervous system, on axon guidance in the developing optic chiasm of mouse embryos. Nogo protein is expressed by radial glia in the midline within the optic chiasm where uncrossed axons turn, and the Nogo receptor (NgR) is expressed on retinal neurites and growth cones. In vitro neurite outgrowth from both dorsonasal and ventrotemporal retina was inhibited by Nogo protein, and this inhibition was abolished by blocking NgR activity.
View Article and Find Full Text PDFWe have examined the trophic effects of conditioned media obtained from purified murine Müller glia cells on chick purified sympathetic or dorsal root ganglia (DRG) neurons and on Retinal Ganglion Cells (RGC) from postnatal mice. Purified murine Müller glia cultures stained positively for vimentin, GFAP or S-100, but were negative for neuronal markers. Murine Müller glial conditioned medium (MMG) was concentrated and at 1:1 dilution supported 100% survival of chick or rat sympathetic neurons after 48 h compared to <5% in controls.
View Article and Find Full Text PDFWe have investigated the localization of Nogo, an inhibitory protein acting on regenerating axons in the adult central nervous system, in the embryonic mouse retinofugal pathway during the major period of axon growth into the optic chiasm. In the retina, Nogo protein was localized on the neuroepithelial cells at E12 and at later stages (E13-E17) on radial glial cells. Colocalization studies showed expression of Nogo on vimentin-positive glia in the retina and at the optic nerve head but not on most of the TuJ1- and islet-1-immunoreactive neurons.
View Article and Find Full Text PDFWe have investigated the factors made by Schwann cells (SCs) that stimulate survival and neurite outgrowth from postnatal rat retinal ganglion cells (RGCs). These effects are preserved under K252a blockade of the Trk family of neurotrophin receptors and are not fully mimicked by the action of a number of known trophic factors. To identify novel factors responsible for this regenerative activity, we have used a radiolabelling assay.
View Article and Find Full Text PDFThere are two main types of layer V pyramidal neurons in rat cortex. Type I neurons have tufted apical dendrites extending into layer I, produce bursts of action potentials and project to subcortical targets (spinal cord, superior colliculus and pontine nuclei). Type II neurons have apical dendrites, which arborize in layers II-IV, do not produce bursts of action potentials and project to ipsilateral and contralateral cortex.
View Article and Find Full Text PDFWe have examined expression of L1 and the polysialic acid-associated form of the neural cell adhesion molecule (PSA-NCAM) in mouse embryos during the major period of axon growth in the retinofugal pathway to determine whether they are expressed in patterns that relate to the changes in axon organization in the pathway. Immunostaining for L1 and PSA-NCAM was found on all axons in the retina and the optic stalk. In the chiasm, while L1 immunoreactivity remained high on the axons, PSA-NCAM staining was obviously reduced.
View Article and Find Full Text PDFThe adult mammalian central nervous system (CNS) does not repair after injury. However, we and others have shown in earlier work that the neonatal CNS is capable of repair and importantly of allowing regenerating axons to re-navigate through the same pathways as they did during development. This phase of neonatal repair is restricted by the fragility of neurons after injury and a lack of trophic factors that enable their survival.
View Article and Find Full Text PDFRetinal axons undergo an age-related reorganization at the junction of the chiasm and the optic tract. We have investigated the effects of removal of chondroitin sulphate on this order change in mouse embryos aged embryonic day 14, when most axons are growing in the optic tract. Enzymatic removal of chondroitin sulphate but not keratan sulphate in brain slice preparations of the retinofugal pathway abolished the accumulation of phalloidin-positive growth cones in the subpial region of the optic tract.
View Article and Find Full Text PDFRetinal axons undergo several changes in organization as they pass through the region of the optic chiasm and optic tract. We used immunocytochemistry to examine the possible involvement of fibroblast growth factor receptors (FGFR) in these changes in retinal axon growth. In the retina, at all ages examined, prominent staining for FGFR was seen in the optic fiber layer and at the optic disk.
View Article and Find Full Text PDFNeuronal survival in the vertebrate peripheral nervous system depends on neurotrophic factors available from target tissues. In an attempt to identify novel survival factors, we have studied the effect of secreted factors from retinal cells on the survival of chick sympathetic ganglion neurons. Embryonic day 10 sympathetic neurons undergo programmed cell death after 48 h without appropriate levels of nerve growth factor (NGF).
View Article and Find Full Text PDF