Publications by authors named "Jeremy S Francis"

N-acetylaspartate (NAA) is an abundant central nervous system amino acid derivative that is tightly coupled to mitochondria and energy metabolism in neurons. A reduced NAA signature is a prominent early pathological biomarker in multiple neurodegenerative diseases and becomes progressively more pronounced as disease advances. Because NAA synthesis requires aspartate drawn directly from mitochondria, we argued that this process is in direct competition with oxidative phosphorylation for substrate and that sustained high levels of NAA synthesis would be incompatible with pathological energy crisis.

View Article and Find Full Text PDF

Recent advances in adeno-associated viral (AAV) capsid variants with novel oligotropism require validation in models of disease in order to be viable candidates for white matter disease gene therapy. We present here an assessment of the biodistribution, tropism, and efficacy of a novel AAV capsid variant (AAV/ Olig001) in a model of Canavan disease. We first define a combination of dose and route of administration of an AAV/Olig001-GFP reporter conducive to widespread CNS oligodendrocyte transduction in acutely symptomatic animals that model the Canavan brain at time of diagnosis.

View Article and Find Full Text PDF

Breakdown of neuro-glial N-acetyl-aspartate (NAA) metabolism results in the failure of developmental myelination, manifest in the congenital pediatric leukodystrophy Canavan disease caused by mutations to the sole NAA catabolizing enzyme aspartoacylase. Canavan disease is a major point of focus for efforts to define NAA function, with available evidence suggesting NAA serves as an acetyl donor for fatty acid synthesis during myelination. Elevated NAA is a diagnostic hallmark of Canavan disease, which contrasts with a broad spectrum of alternative neurodegenerative contexts in which levels of NAA are inversely proportional to pathological progression.

View Article and Find Full Text PDF

N-acetylaspartate (NAA) provides a non-invasive clinical index of neuronal metabolic integrity across the entire neurodegenerative spectrum. While NAA function is not comprehensively defined, reductions in the brain are associated with compromised mitochondrial metabolism and are tightly linked to ATP. We have undertaken an analysis of abnormalities in NAA during early stage pathology in the 5xFAD mouse model of familial Alzheimer's disease and show here that dysregulated expression of the gene encoding for the rate-limiting NAA synthetic enzyme (Nat8L) is associated with deficits in mitochondrial oxidative phosphorylation in this model system.

View Article and Find Full Text PDF

The transcription factor Gata6 regulates proliferation and differentiation of epithelial and endocrine cells and cancers. Among hematopoietic cells, Gata6 is expressed selectively in resident peritoneal macrophages. We thus examined whether the loss of Gata6 in the macrophage compartment affected peritoneal macrophages, using Lyz2-Cre x Gata6(flox/flox) mice to tackle this issue.

View Article and Find Full Text PDF

The inherited pediatric leukodystrophy Canavan disease is characterized by dysmyelination and severe spongiform degeneration, and is currently refractory to treatment. A definitive understanding of core disease mechanisms is lacking, but pathology is believed to result at least in part compromised fatty acid synthesis during myelination. Recent evidence generated in an animal model suggests that the breakdown of N-acetylaspartate metabolism in CD results in a heightened coupling of fatty acid synthesis to oligodendrocyte oxidative metabolism during the early stages of myelination, thereby causing acute oxidative stress.

View Article and Find Full Text PDF
Article Synopsis
  • Canavan disease is a genetic disorder caused by mutations in the ASPA gene, leading to harmful levels of N-acetyl-aspartate in the brain and significant developmental impairments.
  • A study involving 28 patients, including 13 treated with gene therapy using the AAV2-ASPA vector, aimed to evaluate the long-term safety and effectiveness of this treatment.
  • Results showed no long-term adverse effects from the gene therapy, with positive changes in brain chemistry, slowed brain atrophy, reduced seizure frequency, and overall stabilization of clinical status.
View Article and Find Full Text PDF

The inherited leukodystrophy Canavan disease arises due to a loss of the ability to catabolize N-acetylaspartic acid (NAA) in the brain and constitutes a major point of focus for efforts to define NAA function. Accumulation of noncatabolized NAA is diagnostic for Canavan disease, but contrasts with the abnormally low NAA associated with compromised neuronal integrity in a broad spectrum of other clinical conditions. Experimental evidence for NAA function supports a role in white matter lipid synthesis, but does not explain how both elevated and lowered NAA can be associated with pathology in the brain.

View Article and Find Full Text PDF

Aspartoacylase (ASPA) is an enzyme that functions to catabolize the neuronal amino acid derivative N-acetyl-L-aspartic acid (NAA). Loss of this function results in the failure of developmental myelination. NAA synthesis and catabolism are tightly compartmentalized within neurons and oligodendrocytes, respectively, and there is evidence to suggest the developmental regulation of ASPA activity is transcriptional.

View Article and Find Full Text PDF

The high concentration of N-acetylaspartate (NAA) in neurons of the central nervous system and its growing clinical use as an indicator of neuronal viability has intensified interest in the biological function of this amino acid derivative. The biomedical relevance of such inquiries is highlighted by the myelin-associated pathology of Canavan disease, an inherited childhood disorder resulting from mutation of aspartoacylase (ASPA), the NAA-hydrolyzing enzyme. This enzyme is known to be localized in oligodendrocytes with bimodal distribution in cytosol and the myelin sheath, and to produce acetyl groups utilized in myelin lipid synthesis.

View Article and Find Full Text PDF

We have investigated the gliogenic potential of cells isolated from a recently described GFP-transgenic rat [Inoue, H., Ohsawa, I., Murakami, T.

View Article and Find Full Text PDF

Neuronal growth factors are thought to exert a significant degree of control over postnatal oligodendrogenesis, but mechanisms by which these factors coordinateoligodendrocyte development with the maturation of neural networks are poorly characterized. We present here a developmental analysis of aspartoacylase (Aspa)-null tremor rats and show a potential role for this hydrolytic enzyme in the regulation of a postnatal neurotrophic stimulus that impacts on early stages of oligodendrocyte differentiation. Abnormally high levels of brain-derived neurotrophic factor (BDNF) expression in the Aspa-null Tremor brain are associated with dysregulated oligodendrogenesis at a stage in development normally characterized by high levels of Aspa expression.

View Article and Find Full Text PDF

Objectives: To set up a novel simple, sensitive, and reliable ion-pairing HPLC method for the synchronous separation of several purines, pyrimidines, N-acetylated amino acids, and dicarboxylic acids for the chemical diagnosis and screening of inborn errors of metabolism (IEM).

Design And Methods: The separation was set up using a Hypersil C-18, 5-microm particle size, 250 x 4.6 mm column, and a step gradient using two buffers and tetrabutylammonium hydroxide as the pairing reagent.

View Article and Find Full Text PDF

ATF-3 is a member of the ATF superfamily of transcription factors and is strongly associated with episodes of cellular stress. We demonstrate an association between increases in ATF-3 protein and resistance to exitotoxic cell death in vivo. Intra-hippocampal injection of kainic acid elicited a robust increase in endogenous ATF-3 within kainate-resistant cells of the dentate gyrus, while overexpression of exogenous ATF-3 was found to protect vulnerable CA3 neurons from the same insult.

View Article and Find Full Text PDF

Glucagon-like peptide-1 (GLP-1) is a gut peptide that, together with its receptor, GLP-1R, is expressed in the brain. Here we show that intracerebroventricular (i.c.

View Article and Find Full Text PDF