Publications by authors named "Jeremy S Duncan"

It has previously been shown that the zinc-finger transcription factor Gata3 has dynamic expression within the inner ear throughout embryonic development and is essential for cochlear neurosensory development. However, the temporal window for which Gata3 is required for proper formation of the cochlear neurosensory epithelia remains unclear. To investigate the role of Gata3 in cochlear neurosensory development in the late prosensory stages, we used the Sox2-cre mouse line to target and conditionally delete Gata3 at E11.

View Article and Find Full Text PDF

It has been previously shown that zinc-finger transcription factor has dynamic expression within the inner ear throughout embryonic development and is essential for cochlear neurosensory development. However, the temporal window to which is required for the formation of the cochlear neurosensory epithelia remains unclear. To investigate the role of on cochlear neurosensory development in the late prosensory stages, we used the mouse line to target and conditionally delete at E11.

View Article and Find Full Text PDF

During development the afferent neurons of the inner ear make precise wiring decisions in the hindbrain reflective of their topographic distribution in the periphery. This is critical for the formation of sensory maps capable of faithfully processing both auditory and vestibular input. Disorganized central projections of inner ear afferents in null mice indicate Wnt/PCP signaling is involved in this process and ear transplantation in indicates that is necessary in the ear but not the hindbrain for proper afferent navigation.

View Article and Find Full Text PDF

Inner ear sensory afferent connections establish sensory maps between the inner ear hair cells and the vestibular and auditory nuclei to allow vestibular and sound information processing. While molecular guidance of sensory afferents to the periphery has been well studied, molecular guidance of central projections from the ear is only beginning to emerge. Disorganized central projections of spiral ganglion neurons in a Wnt/PCP pathway mutant, Prickle1, suggest the Wnt/PCP pathway plays a role in guiding cochlear afferents to the cochlear nuclei in the hindbrain, consistent with known expression of the Wnt receptor, Frizzled3 (Fzd3) in inner ear neurons.

View Article and Find Full Text PDF

Central nervous system neurons become postmitotic when radial glia cells divide to form neuroblasts. Neuroblasts may migrate away from the ventricle radially along glia fibers, in various directions or even across the midline. We present four cases of unusual migration that are variably connected to either pathology or formation of new populations of neurons with new connectivities.

View Article and Find Full Text PDF

We review the evolution and development of organ of Corti hair cells with a focus on their molecular differences from vestibular hair cells. Such information is needed to therapeutically guide organ of Corti hair cell development in flat epithelia and generate the correct arrangement of different hair cell types, orientation of stereocilia, and the delayed loss of the kinocilium that are all essential for hearing, while avoiding driving hair cells toward a vestibular fate. Highlighting the differences from vestibular organs and defining what is known about the regulation of these differences will help focus future research directions toward successful restoration of an organ of Corti following long-term hair cell loss.

View Article and Find Full Text PDF

Vestibular hair cells of the inner ear are specialized receptors that detect mechanical stimuli from gravity and motion via the deflection of a polarized bundle of stereocilia located on their apical cell surfaces. The orientation of stereociliary bundles is coordinated between neighboring cells by core PCP proteins including the large adhesive G-protein coupled receptor Celsr1. We show that mice lacking Celsr1 have vestibular behavioral phenotypes including circling.

View Article and Find Full Text PDF

The inner ear has long been at the cutting edge of tract tracing techniques that have shaped and reshaped our understanding of the ear's innervation patterns. This review provides a historical framework to understand the importance of these techniques for ear innervation and for development of tracing techniques in general; it is hoped that lessons learned will help to quickly adopt transformative novel techniques and their information and correct past beliefs based on technical limitations. The technical part of the review presents details of our protocol as developed over the last 30 years.

View Article and Find Full Text PDF

The neuron specific RNA-binding proteins NOVA1 and NOVA2 are highly homologous alternative splicing regulators. NOVA proteins regulate at least 700 alternative splicing events in vivo, yet relatively little is known about the biologic consequences of NOVA action and in particular about functional differences between NOVA1 and NOVA2. Transcriptome-wide searches for isoform-specific functions, using NOVA1 and NOVA2 specific HITS-CLIP and RNA-seq data from mouse cortex lacking either NOVA isoform, reveals that NOVA2 uniquely regulates alternative splicing events of a series of axon guidance related genes during cortical development.

View Article and Find Full Text PDF
Article Synopsis
  • The ocular motility disorder CFEOM1 is caused by mutations in the KIF21A gene, affecting motor function in the eye muscles.
  • Research with genetically modified mice shows that these mutations lead to developmental issues in the oculomotor nerve, causing abnormal growth and pathways for nerve fibers.
  • The study identifies a protein called Map1b, which interacts with Kif21a, suggesting that disruptions in this relationship could contribute significantly to the disorder's development.
View Article and Find Full Text PDF

The distinctive planar polarity of auditory hair cells is evident in the polarized organization of the stereociliary bundle. Mutations in the core planar cell polarity gene Van Gogh-like 2 (Vangl2) result in hair cells that fail to properly orient their stereociliary bundles along the mediolateral axis of the cochlea. The severity of this phenotype is graded along the length of the cochlea, similar to the hair cell differentiation gradient, suggesting that an active refinement process corrects planar polarity phenotypes in Vangl2 knock-out (KO) mice.

View Article and Find Full Text PDF

Hair cells of the developing mammalian inner ear are progressively defined through cell fate restriction. This process culminates in the expression of the bHLH transcription factor Atoh1, which is necessary for differentiation of hair cells, but not for their specification. Loss of several genes will disrupt ear morphogenesis or arrest of neurosensory epithelia development.

View Article and Find Full Text PDF

The tetrapod auditory system transmits sound through the outer and middle ear to the organ of Corti or other sound pressure receivers of the inner ear where specialized hair cells translate vibrations of the basilar membrane into electrical potential changes that are conducted by the spiral ganglion neurons to the auditory nuclei. In other systems, notably the vertebrate limb, a detailed connection between the evolutionary variations in adaptive morphology and the underlying alterations in the genetic basis of development has been partially elucidated. In this review, we attempt to correlate evolutionary and partially characterized molecular data into a cohesive perspective of the evolution of the mammalian organ of Corti out of the tetrapod basilar papilla.

View Article and Find Full Text PDF

Here, we review the molecular basis of mechanosensory cell and mechanosensory organ development and evolution with an emphasis on the conservation of transcription factors and emerging data on conserved gene networks. The ear, the organ of vertebrates dedicated to the perception of sound and balance, perceives these stimuli with the use of mechanosensory cells. The developmental gene regulatory network used during mechanosensory cellular development has been conserved from ancient bilaterian cells, and modified for the extraction of specific mechanical stimuli resulting in phenotypic changes.

View Article and Find Full Text PDF

We review the molecular basis of auditory development and evolution. We propose that the auditory periphery (basilar papilla, organ of Corti) evolved by transforming a newly created and redundant vestibular (gravistatic) endorgan into a sensory epithelium that could respond to sound instead of gravity. Evolution altered this new epithelia's mechanoreceptive properties through changes of hair cells, positioned the epithelium in a unique position near perilymphatic space to extract sound moving between the round and the oval window, and transformed its otolith covering into a tympanic membrane.

View Article and Find Full Text PDF

In the mammalian inner ear neurosensory cell fate depends on three closely related transcription factors, Atoh1 for hair cells and Neurog1 and Neurod1 for neurons. We have previously shown that neuronal cell fate can be altered towards hair cell fate by eliminating Neurod1 mediated repression of Atoh1 expression in neurons. To test whether a similar plasticity is present in hair cell fate commitment, we have generated a knockin (KI) mouse line (Atoh1(KINeurog1)) in which Atoh1 is replaced by Neurog1.

View Article and Find Full Text PDF

Atonal homolog1 (Atoh1) is a bHLH transcription factor essential for inner ear hair cell differentiation. Targeted expression of Atoh1 at various stages in development can result in hair cell differentiation in the ear. However, the level and duration of Atoh1 expression required for proper hair cell differentiation and maintenance remain unknown.

View Article and Find Full Text PDF

Haploinsufficiency of Gata3 causes hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome in mice and humans. Gata3 null mutation leads to early lethality around embryonic day (E)11.5, but catecholamine precursor administration can rescue Gata3 null mutants to E16.

View Article and Find Full Text PDF