Publications by authors named "Jeremy Reiter"

Cilia are essential organelles and variants in genes governing ciliary function result in ciliopathic diseases. The Ciliogenesis and PLANar polarity Effectors (CPLANE) protein complex is essential for ciliogenesis in animals models but remains poorly defined. Notably, all but one subunit of the CPLANE complex have been implicated in human ciliopathy.

View Article and Find Full Text PDF
Article Synopsis
  • - Kidney failure significantly impacts health, prompting a large-scale study of 406,504 participants to uncover genetic factors affecting kidney function, identifying 430 key genetic loci.
  • - The research revealed that 56% of inherited differences in kidney function are linked to regulatory elements in kidney tubule epithelial cells, while 7% relate to podocyte cells, suggesting these are crucial for gene expression.
  • - Further analysis using advanced techniques like enhancer assays and CRISPRi identified specific genes (NDRG1, CCNB1, and STC1) regulated by these genetic loci, shedding light on their roles in kidney function.
View Article and Find Full Text PDF

Polycystin-1 (PC-1) and PC-2 form a heteromeric ion channel complex that is abundantly expressed in primary cilia of renal epithelial cells. This complex functions as a non-selective cation channel, and mutations within the polycystin complex cause autosomal dominant polycystic kidney disease (ADPKD). The spatial and temporal regulation of the polycystin complex within the ciliary membrane remains poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Kidney disease is largely influenced by genetics, yet the specific genes and mechanisms involved are still not fully understood; a recent GWAS identified 462 genetic loci associated with kidney function.
  • Researchers used single-cell ATAC-seq maps to explore chromatin accessibility in the kidney, finding that regulatory elements in kidney tubule epithelial cells accounted for the majority of genetic heritability related to kidney function.
  • The study further utilized CRISPR interference to demonstrate how inherited variations in regulatory elements impact gene expression in tubule epithelial cells, ultimately linking these differences to a predisposition for kidney disease in humans.
View Article and Find Full Text PDF

The canonical mitotic cell cycle coordinates DNA replication, centriole duplication and cytokinesis to generate two cells from one. Some cells, such as mammalian trophoblast giant cells, use cell cycle variants like the endocycle to bypass mitosis. Differentiating multiciliated cells, found in the mammalian airway, brain ventricles and reproductive tract, are post-mitotic but generate hundreds of centrioles, each of which matures into a basal body and nucleates a motile cilium.

View Article and Find Full Text PDF

Key Points: Loss of Rab35 leads to nonobstructive hydronephrosis because of loss of ureter epithelium. Rab35 regulates kidney and ureter epithelial cell adhesion and polarity. Rab35 is required for embryonic development.

View Article and Find Full Text PDF

Primary cilia are solitary, immotile sensory organelles present on most cells in the body that participate broadly in human health, physiology and disease. Cilia generate a unique environment for signal transduction with tight control of protein, lipid and second messenger concentrations within a relatively small compartment, enabling reception, transmission and integration of biological information. In this Review, we discuss how cilia function as signalling hubs in cell-cell communication using three signalling pathways as examples: ciliary G-protein-coupled receptors (GPCRs), the Hedgehog (Hh) pathway and polycystin ion channels.

View Article and Find Full Text PDF

The orphan G protein-coupled receptor (GPCR) GPR161 plays a central role in development by suppressing Hedgehog signaling. The fundamental basis of how GPR161 is activated remains unclear. Here, we determined a cryogenic-electron microscopy structure of active human GPR161 bound to heterotrimeric G.

View Article and Find Full Text PDF
Article Synopsis
  • * The research identified two main categories of harmful variants in the polycystin-1 protein: those that prevent it from reaching the cell surface and those that impair its ion channel activity.
  • * A small molecule was found to potentially rescue the surface localization of defective polycystin channels, suggesting that improving channel function through small-molecule therapies could be a promising treatment for ADPKD.
View Article and Find Full Text PDF

Remyelination after white matter injury (WMI) often fails in diseases such as multiple sclerosis because of improper recruitment and repopulation of oligodendrocyte precursor cells (OPCs) in lesions. How OPCs elicit specific intracellular programs in response to a chemically and mechanically diverse environment to properly regenerate myelin remains unclear. OPCs construct primary cilia, specialized signaling compartments that transduce Hedgehog (Hh) and G-protein-coupled receptor (GPCR) signals.

View Article and Find Full Text PDF

Background: Rab35 is a member of a GTPase family of endocytic trafficking proteins. Studies in cell lines have indicated that Rab35 participates in cell adhesion, polarity, cytokinesis, and primary cilia length and composition. Additionally, sea urchin Rab35 regulates actin organization and is required for gastrulation.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in polycystin genes, and , but the underlying pathogenic mechanisms are poorly understood. To identify genes and pathways that operate downstream of polycystin-2 (PC2), a comprehensive gene expression database was created, cataloging changes in the transcriptome immediately following PC2 protein depletion. To explore cyst initiation processes, an immortalized mouse inner medullary collecting duct line was developed with the ability to knock out the gene conditionally.

View Article and Find Full Text PDF
Article Synopsis
  • Hedgehog (Hh) signaling is crucial for development and regeneration, but its misactivation leads to tumors like medulloblastoma and basal cell carcinoma.
  • Researchers are exploring how Hh signaling influences gene expression and cell fate decisions using various methods, including RNA sequencing from human and animal samples.
  • The study identifies new target genes involved in lipid metabolism that respond to Hh signaling, offering potential targets for treating Hh-related cancers.
View Article and Find Full Text PDF

Cilia allowed our protistan ancestors to sense and explore their environment, avoid predation, and capture bacterial prey. Regulated ciliogenesis was likely critical for early animal evolution, and in modern animals, deploying cilia in the right cells at the right time is crucial for development and physiology. Two transcription factors, RFX and FoxJ1, coordinate ciliogenesis in animals but are absent from the genomes of many other ciliated eukaryotes, raising the question of how the regulation of ciliogenesis in animals evolved.

View Article and Find Full Text PDF

The borders between cell and developmental biology, which have always been permeable, have largely dissolved. One manifestation is the blossoming of cilia biology, with cell and developmental approaches (increasingly complemented by human genetics, structural insights, and computational analysis) fruitfully advancing understanding of this fascinating, multifunctional organelle. The last eukaryotic common ancestor probably possessed a motile cilium, providing evolution with ample opportunity to adapt cilia to many jobs.

View Article and Find Full Text PDF

The orphan G protein-coupled receptor (GPCR) GPR161 is enriched in primary cilia, where it plays a central role in suppressing Hedgehog signaling. GPR161 mutations lead to developmental defects and cancers. The fundamental basis of how GPR161 is activated, including potential endogenous activators and pathway-relevant signal transducers, remains unclear.

View Article and Find Full Text PDF

Primary cilia are cellular appendages critical for diverse types of Signaling. They are found on most cell types, including cells throughout the CNS. Cilia preferentially localize certain G-protein-coupled receptors (GPCRs) and are critical for mediating the signaling of these receptors.

View Article and Find Full Text PDF

Centrosomes are orbited by centriolar satellites, dynamic multiprotein assemblies nucleated by Pericentriolar material 1 (PCM1). To study the requirement for centriolar satellites, we generated mice lacking PCM1, a crucial component of satellites. mice display partially penetrant perinatal lethality with survivors exhibiting hydrocephalus, oligospermia, and cerebellar hypoplasia, and variably expressive phenotypes such as hydronephrosis.

View Article and Find Full Text PDF

The G protein-coupled receptor melanocortin-4 receptor (MC4R) and its associated protein melanocortin receptor-associated protein 2 (MRAP2) are essential for the regulation of food intake and body weight in humans. MC4R localizes and functions at the neuronal primary cilium, a microtubule-based organelle that senses and relays extracellular signals. Here, we demonstrate that MRAP2 is critical for the weight-regulating function of MC4R neurons and the ciliary localization of MC4R.

View Article and Find Full Text PDF

Zika virus (ZIKV) is a flavivirus transmitted via mosquitoes and sex to cause congenital neurodevelopmental defects, including microcephaly. Inherited forms of microcephaly (MCPH) are associated with disrupted centrosome organization. Similarly, we found that ZIKV infection disrupted centrosome organization.

View Article and Find Full Text PDF

Hedgehog (HH) signaling is an intercellular communication pathway involved in directing the development and homeostasis of metazoans. HH signaling depends on lipids that covalently modify HH proteins and participate in signal transduction downstream. In many animals, the HH pathway requires the primary cilium, an organelle with a specialized protein and lipid composition.

View Article and Find Full Text PDF

Molecular characterization of cell types using single-cell transcriptome sequencing is revolutionizing cell biology and enabling new insights into the physiology of human organs. We created a human reference atlas comprising nearly 500,000 cells from 24 different tissues and organs, many from the same donor. This atlas enabled molecular characterization of more than 400 cell types, their distribution across tissues, and tissue-specific variation in gene expression.

View Article and Find Full Text PDF

is a gene known for its role in cytokinesis and is associated with spinocerebellar ataxia (SCA10), a slowly progressing cerebellar syndrome caused by an intragenic pentanucleotide repeat expansion. is also implicated in the ciliopathy syndromes nephronophthisis (NPHP) and Joubert syndrome (JBTS), which are caused by the disruption of cilia function leading to nephron loss, impaired renal function, and cerebellar hypoplasia. How disruption contributes to these disorders remains unknown.

View Article and Find Full Text PDF

Centrioles comprise the heart of centrosomes, microtubule-organizing centers. To study the function of centrioles in lung and gut development, we genetically disrupted centrioles throughout the mouse endoderm. Surprisingly, removing centrioles from the endoderm did not disrupt intestinal growth or development but blocked lung branching.

View Article and Find Full Text PDF