In this study we analyze the impact of major drivers of future air quality, both separately and simultaneously, for the year 2035 in three major California air basins: the South Coast Air Basin (SoCAB), the San Francisco Bay Area (SFBA), and the San Joaquin Valley (SJV). A variety of scenarios are considered based on changes in climate-driven meteorological conditions and both biogenic and anthropogenic emissions. Anthropogenic emissions are based on (1) the California Air Resources Board (CARB) California Emissions Projection Analysis Model (CEPAM), (2) increases in electric sector emissions due to climate change, and (3) aggressive adoption of alternative energy technologies electrification of end-use technologies, and energy efficiency measures.
View Article and Find Full Text PDFSulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline.
View Article and Find Full Text PDF