Physiologically relevant drought stress is difficult to apply consistently, and the heterogeneity in experimental design, growth conditions, and sampling schemes make it challenging to compare water deficit studies in plants. Here, we re-analyzed hundreds of drought gene expression experiments across diverse model and crop species and quantified the variability across studies. We found that drought studies are surprisingly uncomparable, even when accounting for differences in genotype, environment, drought severity, and method of drying.
View Article and Find Full Text PDFDrought tolerance is a highly complex trait controlled by numerous interconnected pathways with substantial variation within and across plant species. This complexity makes it difficult to distill individual genetic loci underlying tolerance, and to identify core or conserved drought-responsive pathways. Here, we collected drought physiology and gene expression datasets across diverse genotypes of the C4 cereals sorghum and maize and searched for signatures defining water-deficit responses.
View Article and Find Full Text PDFResurrection plants can survive prolonged life without water (anhydrobiosis) in regions with seasonal drying. This desiccation tolerance requires the coordination of numerous cellular processes across space and time, and individual plant tissues face unique constraints related to their function. Here, we analyzed the complex, octoploid genome of the model resurrection plant Craterostigma (C.
View Article and Find Full Text PDFDesiccation tolerance is an ancient and complex trait that spans all major lineages of life on earth. Although important in the evolution of land plants, the mechanisms that underlay this complex trait are poorly understood, especially for vegetative desiccation tolerance (VDT). The lack of suitable closely related plant models that offer a direct contrast between desiccation tolerance and sensitivity has hampered progress.
View Article and Find Full Text PDFGrasslands dominate the terrestrial landscape, and grasses have evolved complex and elegant strategies to overcome abiotic stresses. The C4 grasses are particularly stress tolerant and thrive in tropical and dry temperate ecosystems. Growing evidence suggests that the presence of C4 photosynthesis alone is insufficient to account for drought resilience in grasses, pointing to other adaptations as contributing to tolerance traits.
View Article and Find Full Text PDFThe effect of including triose phosphate utilization (TPU) on parameterization of the Farquhar, von Caemmerer, Berry model of photosynthetic gas exchange measurements is explored. Better fits to data are found even though TPU rarely limits photosynthesis under physiological conditions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2020
Grasses are among the most resilient plants, and some can survive prolonged desiccation in semiarid regions with seasonal rainfall. However, the genetic elements that distinguish grasses that are sensitive versus tolerant to extreme drying are largely unknown. Here, we leveraged comparative genomic approaches with the desiccation-tolerant grass and the related desiccation-sensitive cereal to identify changes underlying desiccation tolerance.
View Article and Find Full Text PDFTeff (Eragrostis tef) is a cornerstone of food security in the Horn of Africa, where it is prized for stress resilience, grain nutrition, and market value. Here, we report a chromosome-scale assembly of allotetraploid teff (variety Dabbi) and patterns of subgenome dynamics. The teff genome contains two complete sets of homoeologous chromosomes, with most genes maintaining as syntenic gene pairs.
View Article and Find Full Text PDFThe ability to predict traits from genome-wide sequence information (i.e., genomic prediction) has improved our understanding of the genetic basis of complex traits and transformed breeding practices.
View Article and Find Full Text PDFis an emerging model for desiccation tolerance and genome size evolution in grasses. A draft genome of Oropetium was recently sequenced, but the lack of a chromosome-scale assembly has hindered comparative analyses and downstream functional genomics. Here, we reassembled Oropetium, and anchored the genome into 10 chromosomes using high-throughput chromatin conformation capture (Hi-C) based chromatin interactions.
View Article and Find Full Text PDFDesiccation tolerance was a critical adaptation for the colonization of land by early nonvascular plants. Resurrection plants have maintained or rewired these ancestral protective mechanisms, and desiccation-tolerant species are dispersed across the land plant phylogeny. Although common physiological, biochemical, and molecular signatures are observed across resurrection plant lineages, features underlying the recurrent evolution of desiccation tolerance are unknown.
View Article and Find Full Text PDFAlthough several resurrection plant genomes have been sequenced, the lack of suitable dehydration-sensitive outgroups has limited genomic insights into the origin of desiccation tolerance. Here, we utilized a comparative system of closely related desiccation-tolerant () and -sensitive () species to identify gene- and pathway-level changes associated with the evolution of desiccation tolerance. The two high-quality genomes we assembled are largely collinear, and over 90% of genes are conserved.
View Article and Find Full Text PDFPlant genome size varies by four orders of magnitude, and most of this variation stems from dynamic changes in repetitive DNA content. Here we report the small 109 Mb genome of Selaginella lepidophylla, a clubmoss with extreme desiccation tolerance. Single-molecule sequencing enables accurate haplotype assembly of a single heterozygous S.
View Article and Find Full Text PDF