Publications by authors named "Jeremy P Wood"

Protein S (PS), the critical plasma cofactor for the anticoagulants tissue factor (TF) pathway inhibitor (TFPI) and activated protein C (APC), circulates in two functionally distinct pools: free (anticoagulant) or bound to complement component 4b-binding protein (C4BP) (anti-inflammatory). Acquired free PS deficiency is detected in several viral infections, but its cause is unclear. Here, we identified a shear-dependent interaction between PS and von Willebrand Factor (VWF) by mass spectrometry.

View Article and Find Full Text PDF

Antithrombotic therapy is a delicate balance between the benefits of preventing a thrombotic event and the risks of inducing a major bleed. Traditional approaches have included antiplatelet and anticoagulant medications, require careful dosing and monitoring, and all carry some risk of bleeding. In recent years, several new targets have been identified, both in the platelet and coagulation systems, which may mitigate this bleeding risk.

View Article and Find Full Text PDF

Platelets contribute to COVID-19 clinical manifestations, of which microclotting in the pulmonary vasculature has been a prominent symptom. To investigate the potential diagnostic contributions of overall platelet morphology and their α-granules and mitochondria to the understanding of platelet hyperactivation and micro-clotting, we undertook a 3D ultrastructural approach. Because differences might be small, we used the high-contrast, high-resolution technique of focused ion beam scanning EM (FIB-SEM) and employed deep learning computational methods to evaluate nearly 600 individual platelets and 30 000 included organelles within three healthy controls and three severely ill COVID-19 patients.

View Article and Find Full Text PDF

Systemic blood coagulation accompanies inflammation during severe infection like sepsis and COVID. We've previously established a link between pyroptosis, a vital defense mechanism against infection, and coagulopathy. During pyroptosis, the formation of gasdermin-D (GSDMD) pores on the plasma membrane leads to the release of tissue factor (TF)-positive microvesicles (MVs) that are procoagulant.

View Article and Find Full Text PDF

Background: Patients with COVID-19 have a higher risk of thrombosis and thromboembolism, but the underlying mechanism(s) remain to be fully elucidated. In patients with COVID-19, high lipoprotein(a) (Lp(a)) is positively associated with the risk of ischemic heart disease. Lp(a), composed of an apoB-containing particle and apolipoprotein(a) (apo(a)), inhibits the key fibrinolytic enzyme, tissue-type plasminogen activator (tPA).

View Article and Find Full Text PDF

Introduction: Thrombin, the enzyme which converts fibrinogen into a fibrin clot, is produced by the prothrombinase complex, composed of factor Xa (FXa) and factor Va (FVa). Down-regulation of this process is critical, as excess thrombin can lead to life-threatening thrombotic events. FXa and FVa are inhibited by the anticoagulants tissue factor pathway inhibitor alpha (TFPIα) and activated protein C (APC), respectively, and their common cofactor protein S (PS).

View Article and Find Full Text PDF

Objectives: To investigate whether COVID-19 patients with pulmonary embolism had higher mortality and assess the utility of D-dimer in predicting acute pulmonary embolism.

Patients And Methods: Using the National Collaborative COVID-19 retrospective cohort, a cohort of hospitalized COVID-19 patients was studied to compare 90-day mortality and intubation outcomes in patients with and without pulmonary embolism in a multivariable cox regression analysis. The secondary measured outcomes in 1:4 propensity score-matched analysis included length of stay, chest pain incidence, heart rate, history of pulmonary embolism or DVT, and admission laboratory parameters.

View Article and Find Full Text PDF
Dysregulation of Protein S in COVID-19.

Best Pract Res Clin Haematol

September 2022

Coronavirus Disease 2019 (COVID-19) has been widely associated with increased thrombotic risk, with many different proposed mechanisms. One such mechanism is acquired deficiency of protein S (PS), a plasma protein that regulates coagulation and inflammatory processes, including complement activation and efferocytosis. Acquired PS deficiency is common in patients with severe viral infections and has been reported in multiple studies of COVID-19.

View Article and Find Full Text PDF

Histones are cationic nuclear proteins that are essential for the structure and functions of eukaryotic chromatin. However, extracellular histones trigger inflammatory responses and contribute to death in sepsis by unknown mechanisms. We recently reported that inflammasome activation and pyroptosis trigger coagulation activation through a tissue-factor (TF)-dependent mechanism.

View Article and Find Full Text PDF
Article Synopsis
  • Traumatic brain injury (TBI) causes damage that leads to increased blood clotting, which can result in serious complications like coagulopathy and delayed thrombosis.
  • The study aimed to investigate the role of tissue factor (TF) in promoting thrombin generation following TBI by using controlled injury models and examining blood samples at different times post-injury.
  • Results showed that TF levels and thrombin generation were significantly higher in one injury model (CCI) compared to control, indicating that TF plays a crucial role in the coagulation response after TBI, with variations based on injury type and severity.
View Article and Find Full Text PDF

Background: HIV-1 infection is associated with multiple procoagulant changes and increased thrombotic risk. Possible mechanisms for this risk include heigthened expression of procoagulant tissue factor (TF) on circulating monocytes, extracellular vesicles, and viral particles and/or acquired deficiency of protein S (PS), a critical cofactor for the anticoagulant protein C (PC). PS deficiency occurs in up to 76% of people living with HIV-1 (PLWH).

View Article and Find Full Text PDF

Background: Serglycin (SRGN) is an intragranular, sulfated proteoglycan in hematopoietic cells that affects granule composition and function.

Objective: To understand how SRGN affects platelet granule packaging, cargo release, and extra-platelet microenvironments.

Methods: Platelets and megakaryocytes from SRGN mice were assayed for secretion kinetics, cargo levels, granule morphology upon activation, and receptor shedding.

View Article and Find Full Text PDF

Hemostatic clot formation is the result of a balance between the procoagulant system responding to tissue trauma and the anticoagulant system, which restricts clot formation to the injury site. Imbalances in coagulation lead to a tendency towards either thrombosis or bleeding. Over the past two years, studies published in have provided insights into the regulation of this crucial system.

View Article and Find Full Text PDF

Dyslipidemia is a risk factor for clinically significant thrombotic events. In this condition, scavenger receptor CD36 potentiates platelet reactivity through recognition of circulating oxidized lipids. CD36 promotes thrombosis by activating redox-sensitive signaling molecules, such as the MAPK extracellular signal-regulated kinase 5 (ERK5).

View Article and Find Full Text PDF

This 9th Symposium on Hemostasis is an international scientific meeting held biannually in Chapel Hill, North Carolina. The meeting is in large measure the result of the close friendship between the late Dr. Harold R.

View Article and Find Full Text PDF

Tissue factor pathway inhibitor α (TFPIα) inhibits prothrombinase, the thrombin-generating complex of factor Xa (FXa) and factor Va (FVa), during the initiation of coagulation. This inhibition requires binding of a conserved basic region within TFPIα to a conserved acidic region in FXa-activated and platelet-released FVa. In this study, the contribution of interactions between TFPIα and the FXa active site and FVa heavy chain to prothrombinase inhibition were examined to further define the inhibitory biochemistry.

View Article and Find Full Text PDF

Activated factor V (FVa) and factor X (FXa) form prothrombinase, which converts prothrombin to thrombin. The α isoform of tissue factor (TF) pathway inhibitor (TFPI) dampens early procoagulant events, partly by interacting with FV. FV Leiden (FVL) is the most common genetic thrombophilia in Caucasians.

View Article and Find Full Text PDF

Unfractionated heparin (UFH) has procoagulant activity in antithrombin/heparin cofactor II (HCII)-depleted plasma. UFH prevents tissue factor pathway inhibitor alpha (TFPIα) from inhibiting the procoagulant enzyme complex, prothrombinase, providing a possible mechanism for its procoagulant activity. The procoagulant potential of UFH and various low molecular weight heparins (LMWHs) were characterized for TFPIα dependence, using thrombin generation assays performed with antithrombin/HCII-depleted plasma.

View Article and Find Full Text PDF

Recent studies of the anticoagulant activities of the tissue factor (TF) pathway inhibitor (TFPI) isoforms, TFPIα and TFPIβ, have provided new insight into the biochemical and physiological mechanisms that underlie bleeding and clotting disorders. TFPIα and TFPIβ have tissue-specific expression patterns and anticoagulant activities. An alternative splicing event in the 5' untranslated region allows for translational regulation of TFPIβ expression.

View Article and Find Full Text PDF

Objective: Tissue factor pathway inhibitor (TFPI) is produced in 2 isoforms: TFPIα, a soluble protein in plasma, platelets, and endothelial cells, and TFPIβ, a glycosylphosphatidylinositol-anchored protein on endothelium. Protein S (PS) functions as a cofactor for TFPIα, enhancing the inhibition of factor Xa. However, PS does not alter the inhibition of prothrombinase by TFPIα, and PS interactions with TFPIβ are undescribed.

View Article and Find Full Text PDF

Tissue factor (TF) pathway inhibitor (TFPI) is a well-characterized activated factor X (FXa)-dependent inhibitor of TF-initiated coagulation produced in two alternatively spliced isoforms, TFPIα and TFPIβ. The TFPIα C terminus has a basic sequence nearly identical to a portion of the factor V (FV) B domain necessary for maintaining FV in an inactive conformation via interaction with an acidic region of the B domain. We demonstrate rapid inhibition of prothrombinase by TFPIα mediated through a high-affinity exosite interaction between the basic region of TFPIα and the FV acidic region, which is retained in FXa-activated FVa and platelet FVa.

View Article and Find Full Text PDF