Publications by authors named "Jeremy P Blaydes"

Obesity can initiate, promote, and maintain systemic inflammation via metabolic reprogramming of macrophages that encircle adipocytes, termed crown-like structures (CLS). In breast cancer the presence of CLS has been correlated to high body mass index (BMI), larger mammary adipocyte size and postmenopausal status. However, the prognostic significance of CLS in HER2 + breast cancer is still unknown.

View Article and Find Full Text PDF

Adaptive responses to hypoxia are mediated by the hypoxia-inducible factor (HIF) family of transcription factors. These responses include the upregulation of glycolysis to maintain ATP production. This also generates acidic metabolites, which require HIF-induced carbonic anhydrase IX (CAIX) for their neutralisation.

View Article and Find Full Text PDF

High rates of glycolysis in cancer cells are a well-established characteristic of many human tumors, providing rapidly proliferating cancer cells with metabolites that can be used as precursors for anabolic pathways. Maintenance of high glycolytic rates depends on the lactate dehydrogenase-catalyzed regeneration of NAD from GAPDH-generated NADH because an increased NADH:NAD ratio inhibits GAPDH. Here, using human breast cancer cell models, we identified a pathway in which changes in the extramitochondrial-free NADH:NAD ratio signaled through the CtBP family of NADH-sensitive transcriptional regulators to control the abundance and activity of p53.

View Article and Find Full Text PDF

Glycolysis and hypoxia are key regulators of human embryonic stem cell (hESC) self-renewal, but how changes in metabolism affect gene expression is poorly understood. C-terminal binding proteins (CTBPs) are glycolytic sensors that through NADH binding link the metabolic state of the cell to its gene expression, by acting as transcriptional corepressors, or coactivators. However, the role of CTBPs in hESCs has not previously been investigated.

View Article and Find Full Text PDF

Altered flux through major metabolic pathways is a hallmark of cancer cells and provides opportunities for therapy. Stem cell-like cancer (SCLC) cells can cause metastasis and therapy resistance. They possess metabolic plasticity, theoretically enabling resistance to therapies targeting a specific metabolic state.

View Article and Find Full Text PDF

Background: Metabolic changes in tumour cells are used in clinical imaging and may provide potential therapeutic targets. Human papillomavirus (HPV) status is important in classifying head and neck cancers (HNSCC), identifying a distinct clinical phenotype; metabolic differences between these HNSCC subtypes remain poorly understood.

Methods: We used RNA sequencing to classify the metabolic expression profiles of HPV and HPV HNSCC, performed a meta-analysis on FDG-PET imaging characteristics and correlated results with in vitro extracellular flux analysis of HPV and HPV HNSCC cell lines.

View Article and Find Full Text PDF

Altered glycolysis is a characteristic of many cancers, and can also be associated with changes in stem cell-like cancer (SCLC) cell populations. We therefore set out to directly examine the effect of glycolysis on SCLC cell phenotype, using a model where glycolysis is stably reduced by adapting the cells to a sugar source other than glucose. Restricting glycolysis using this approach consistently resulted in cells with increased oncogenic potential; including an increase in SCLC cells, proliferation in 3D matrigel, invasiveness, chemoresistance, and altered global gene expression.

View Article and Find Full Text PDF

Tumors carrying hereditary mutations in BRCA1, which attenuate the BRCA1 DNA damage repair pathway, are more susceptible to dual treatment with PARP inhibitors and DNA damaging therapeutics. Conversely, breast cancer tumors with nonmutated functional BRCA1 are less sensitive to PARP inhibition. We describe a method that triggers susceptibility to PARP inhibition in BRCA1-functional tumor cells.

View Article and Find Full Text PDF

We describe the development of a small-molecule mimic of Xaa-trans-Pro dipeptide in poly-l-proline type II helix conformation, based upon a (3R,6S,9S)-2-oxo-1-azabicyclo[4.3.0]nonane core structure.

View Article and Find Full Text PDF

Interactions between cancer cells and cancer-associated fibroblasts (CAFs) play an important role in tumour development and progression. In this study we investigated the functional role of CAFs in oesophageal adenocarcinoma (EAC). We used immunochemistry to analyse a cohort of 183 EAC patients for CAF markers related to disease mortality.

View Article and Find Full Text PDF

Click DNA ligation promises an alternative to the current enzymatic approaches for DNA assembly, with the ultimate goal of using efficient chemical reactions for the total chemical synthesis and assembly of genes and genomes. Such an approach would enable the incorporation of various chemically modified bases throughout long stretches of DNA, a feat not possible with current polymerase-based methods. An unequivocal requirement for this approach is the biocompatibility of the resulting triazole-linked DNA.

View Article and Find Full Text PDF

Introduction: Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice.

Methods: More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment.

View Article and Find Full Text PDF

Identification of direct modulators of transcription factor protein-protein interactions is a key challenge for ligand discovery that promises to significantly advance current approaches to cancer therapy. Here, we report an inhibitor of NADH-dependent dimerization of the C-terminal binding protein (CtBP) transcriptional repressor, identified by screening genetically encoded cyclic peptide libraries of up to 64 million members. CtBP dimers form the core of transcription complexes associated with epigenetic regulation of multiple genes that control many characteristics of cancer cells, including proliferation, survival and migration.

View Article and Find Full Text PDF

Aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) is a bifunctional homodimeric enzyme that catalyzes the last two steps of de novo purine biosynthesis. Homodimerization of ATIC, a protein-protein interaction with an interface of over 5000 Å(2), is required for its aminoimidazole carboxamide ribonucleotide (AICAR) transformylase activity, with the active sites forming at the interface of the interacting proteins. Here, we report the development of a small-molecule inhibitor of AICAR transformylase that functions by preventing the homodimerization of ATIC.

View Article and Find Full Text PDF

Multicellular tumour spheroid (MCTS) cultures are excellent model systems for simulating the development and microenvironmental conditions of in vivo tumour growth. Many documented cell lines can generate differentiated MCTS when cultured in suspension or in a non-adhesive environment. While physiological and biochemical properties of MCTS have been extensively characterized, insight into the events and conditions responsible for initiation of these structures is lacking.

View Article and Find Full Text PDF

Background: Cyclin-dependent kinases 2, 4 and 6 (Cdk2, Cdk4, Cdk6) are closely structurally homologous proteins which are classically understood to control the transition from the G1 to the S-phases of the cell cycle by combining with their appropriate cyclin D or cyclin E partners to form kinase-active holoenzymes. Deregulation of Cdk4 is widespread in human cancer, CDK4 gene knockout is highly protective against chemical and oncogene-mediated epithelial carcinogenesis, despite the continued presence of CDK2 and CDK6; and overexpresssion of Cdk4 promotes skin carcinogenesis. Surprisingly, however, Cdk4 kinase inhibitors have not yet fulfilled their expectation as 'blockbuster' anticancer agents.

View Article and Find Full Text PDF

Background Information: CtBPs [C-terminal (of E1A) binding protein] have roles in the nucleus as transcriptional co-repressors, and in the cytoplasm in the maintenance of vesicular membranes. CtBPs are expressed from two genes, CTBP1 and CTBP2, mRNA products of which are alternatively spliced at their 5'-ends to generate distinct protein isoforms. Extensive molecular and cellular analyses have identified CtBPs as regulators of pathways critical for tumour initiation, progression and response to therapy.

View Article and Find Full Text PDF

Background Information: Carcinoma of the oesophagus is the sixth leading cause of cancer death in the western world and is associated with a 5-year survival of less than 15%. Recent evidence suggests that stromal-epithelial interactions are fundamental in carcinogenesis. The advent of co-culture techniques permits the investigation of cross-talk between the stroma and epithelium in a physiological setting.

View Article and Find Full Text PDF

eIF4E is over-expressed in many tumours, including a high proportion of breast cancers. eIF4E is an oncogene, and signalling pathways which promote eIF4E activity represent potential targets for therapeutic intervention in cancer. MNKs phosphorylate eIF4E on serine 209, a modification that can be required for eIF4E-dependent cell transformation.

View Article and Find Full Text PDF

The p53 regulatory network is critically involved in preventing the initiation of cancer. In unstressed cells, p53 is maintained at low levels and is largely inactive, mainly through the action of its two essential negative regulators, HDM2 and HDMX. p53 abundance and activity are up-regulated in response to various stresses, including DNA damage and oncogene activation.

View Article and Find Full Text PDF

CtBPs (CtBP1 and CtBP2) act in the nucleus as transcriptional corepressors and in the cytoplasm as regulators of Golgi apparatus fission. Studies in which the expression or function of CtBPs has been inhibited have independently identified roles for CtBPs in both suppressing apoptosis and promoting cell cycle progression. Here, we have analyzed the consequences of ablating CtBP expression in breast cancer-derived cell lines.

View Article and Find Full Text PDF

Studies from murine embryogenesis and cancer cells derived from human melanomas have identified a critical role for the transcription factor PAX3 in the suppression of p53 protein accumulation and p53-dependent apoptosis. Here we show, using a well-defined over-expression system, that PAX3 suppresses p53-dependent transcription from promoters of p53-responsive genes, notably BAX and HDM2-P2, and reduces p53 protein abundance by promoting its degradation. We define the functional domains of PAX3 required for this activity, and furthermore present evidence that PAX3-dependent inhibition of p53 is independent of binding of the N-terminal domain of p53 to HDM2, the primary negative regulator of cellular p53 activity.

View Article and Find Full Text PDF

Background: CtBP1 and CtBP2 are transcriptional co-repressors that modulate the activity of a large number of transcriptional repressors via the recruitment of chromatin modifiers. Many CtBP-regulated proteins are involved in pathways associated with tumorigenesis, including TGF-beta and Wnt signalling pathways and cell cycle regulators such as RB/p130 and HDM2, as well as adenovirus E1A. CtBP1 and CtBP2 are highly similar proteins, although evidence is emerging that their activity can be differentially regulated, particularly through the control of their subcellular localisation.

View Article and Find Full Text PDF

Background: The MDM2 gene encodes a negative regulator of the p53 tumour suppressor protein. A single nucleotide polymorphism (SNP) in the MDM2 promoter (a T to G exchange at nucleotide 309) has been reported to produce accelerated tumour formation in individuals with inherited p53 mutations. We have investigated the effect of the MDM2 SNP309 on clinical outcome in a cohort of patients with germline mutations of BRCA1.

View Article and Find Full Text PDF

Cell cycle progression in response to serum growth factors is dependent on the expression of functional Hdm2 (Mdm2), which inhibits p53-dependent transcription of anti-proliferative genes. In a well characterised non-transformed human fibroblast model, growth factors induce the expression of Hdm2 with rapid kinetics. Here we dissect the mechanistic basis for this critical response.

View Article and Find Full Text PDF