Thermal denaturation (TD), known as antigen retrieval, heats tissue samples in a buffered solution to expose protein epitopes. Thermal denaturation of formalin-fixed paraffin-embedded samples enhances on-tissue tryptic digestion, increasing peptide detection using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS). We investigated the tissue-dependent effects of TD on peptide MALDI IMS and liquid chromatography-tandem mass spectrometry signal in unfixed, frozen human colon, ovary, and pancreas tissue.
View Article and Find Full Text PDFAlthough classical molecular biology assays can provide a measure of cellular response to chemical challenges, they rely on a single biological phenomenon to infer a broader measure of cellular metabolic response. These methods do not always afford the necessary sensitivity to answer questions of subcytotoxic effects, nor do they work for all cell types. Likewise, boutique assays such as cardiomyocyte beat rate may indirectly measure cellular metabolic response, but they too, are limited to measuring a specific biological phenomenon and are often limited to a single cell type.
View Article and Find Full Text PDFImaging mass spectrometry (IMS) provides promising avenues to augment histopathological investigation with rich spatio-molecular information. We have previously developed a classification model to differentiate melanoma from nevi lesions based on IMS protein data, a task that is challenging solely by histopathologic evaluation. Most IMS-focused studies collect microscopy in tandem with IMS data, but this microscopy data is generally omitted in downstream data analysis.
View Article and Find Full Text PDFField-forward analytical technologies, such as portable mass spectrometry (MS), enable essential capabilities for real-time monitoring and point-of-care diagnostic applications. Significant and recent investments improving the features of miniaturized mass spectrometers enable various new applications outside of small molecule detection. Most notably, the addition of tandem mass spectrometry scans (MS/MS) allows the instrument to isolate and fragment ions and increase the analytical specificity by measuring unique chemical signatures for ions of interest.
View Article and Find Full Text PDFMol Cell Proteomics
September 2023
Imaging mass spectrometry (IMS) is a molecular technology utilized for spatially driven research, providing molecular maps from tissue sections. This article reviews matrix-assisted laser desorption ionization (MALDI) IMS and its progress as a primary tool in the clinical laboratory. MALDI mass spectrometry has been used to classify bacteria and perform other bulk analyses for plate-based assays for many years.
View Article and Find Full Text PDFTechnological advances have made it feasible to collect multi-condition multi-omic time courses of cellular response to perturbation, but the complexity of these datasets impedes discovery due to challenges in data management, analysis, visualization, and interpretation. Here, we report a whole-cell mechanistic analysis of HL-60 cellular response to bendamustine. We integrate both enrichment and network analysis to show the progression of DNA damage and programmed cell death over time in molecular, pathway, and process-level detail using an interactive analysis framework for multi-omics data.
View Article and Find Full Text PDFWe have developed a pre-coated substrate for matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) that enables high spatial resolution mapping of both phospholipids and neutral lipid classes in positive ion mode as metal cation adducts. The MALDI substrates are constructed by depositing a layer of α-cyano-4-hydroxycinnamic acid (CHCA) and potassium salts onto silicon nanopost arrays (NAPA) prior to tissue mounting. The matrix/salt pre-coated NAPA substrate significantly enhances all detected lipid signals allowing lipids to be detected at lower laser energies than bare NAPA.
View Article and Find Full Text PDFBackground: The definitive diagnosis of melanocytic neoplasia using solely histopathologic evaluation can be challenging. Novel techniques that objectively confirm diagnoses are needed. This study details the development and validation of a melanoma prediction model from spatially resolved multivariate protein expression profiles generated by imaging mass spectrometry (IMS).
View Article and Find Full Text PDFSystemic toxicity assessments for oral or parenteral drugs often utilize the concentration of drug in plasma to enable safety margin calculations for human risk assessment. For topical drugs, there is no standard method for measuring drug concentrations in the stratum basale of the viable epidermis. This is particularly important since the superficial part of the epidermis, the stratum corneum (SC), is nonviable and where most of a topically applied drug remains, never penetrating deeper into the skin.
View Article and Find Full Text PDFDistinguishing low-grade phyllodes tumor from fibroadenoma is practically challenging due to their overlapping histologic features. However, the final interpretation is essential to surgeons, who base their management on the final pathology report. Patients who receive a diagnosis of fibroadenoma might not undergo any additional intervention while lumpectomy with wide margins is the standard of care for phyllodes tumor, which can have significant cosmetic consequences.
View Article and Find Full Text PDFWe present a microwave source that is controlled by a commercially available field-programmable gate array (FPGA). Using an FPGA allows for precise control of the time dependent microwave-dressing applied to a sample of trapped cold atoms. We test our microwave source by exciting Rabi oscillations in a Na spinor Bose-Einstein condensate.
View Article and Find Full Text PDFImaging mass spectrometry is a powerful technology that combines the molecular measurements of mass spectrometry with the spatial information inherent to microscopy. This unique combination of capabilities is ideally suited for the analysis of metabolites and lipids from single cells. This chapter describes a methodology for the sample preparation and analysis of single cells using high performance MALDI FTICR MS.
View Article and Find Full Text PDFThe combination of sodium salt doping of a tissue section along with the sublimation of the matrix 2,5-dihydrobenzoic acid (DHB) was found to be an effective coating for the simultaneous detection of neutral lipids and phospholipids using matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry in positive ionization mode. Lithium, sodium, and potassium acetate were initially screened for their ability to cationize difficult to analyze neutral lipids such as cholesterol esters, cerebrosides, and triglycerides directly from a tissue section. The combination of sodium salt and DHB sublimation was found to be an effective cation/matrix combination for detection of neutral lipids.
View Article and Find Full Text PDFJ Mass Spectrom
August 2019
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a molecular imaging technology uniquely capable of untargeted measurement of proteins, lipids, and metabolites while retaining spatial information about their location in situ. This powerful combination of capabilities has the potential to bring a wealth of knowledge to the field of molecular histology. Translation of this innovative research tool into clinical laboratories requires the development of reliable sample preparation protocols for the analysis of proteins from formalin-fixed paraffin-embedded (FFPE) tissues, the standard preservation process in clinical pathology.
View Article and Find Full Text PDFZinc (Zn) is an essential trace metal required for all forms of life, but is toxic at high concentrations. While the toxic effects of high levels of Zn are well documented, the mechanism of cell death appears to vary based on the study and concentration of Zn. Zn has been proposed as an anti-cancer treatment against non-small cell lung cancer (NSCLC).
View Article and Find Full Text PDFAims/hypothesis: The molecular response and function of pancreatic islet cells during metabolic stress is a complex process. The anatomical location and small size of pancreatic islets coupled with current methodological limitations have prevented the achievement of a complete, coherent picture of the role that lipids and proteins play in cellular processes under normal conditions and in diseased states. Herein, we describe the development of untargeted tissue imaging mass spectrometry (IMS) technologies for the study of in situ protein and, more specifically, lipid distributions in murine and human pancreases.
View Article and Find Full Text PDFHistology-directed imaging mass spectrometry (IMS) is a spatially targeted IMS acquisition method informed by expert annotation that provides rapid molecular characterization of select tissue structures. The expert annotations are usually determined on digital whole slide images of histological stains where the staining preparation is incompatible with optimal IMS preparation, necessitating serial sections: one for annotation, one for IMS. Registration is then used to align staining annotations onto the IMS tissue section.
View Article and Find Full Text PDFProteomics, metabolomics, and transcriptomics generate comprehensive data sets, and current biocomputational capabilities allow their efficient integration for systems biology analysis. Published multiomics studies cover methodological advances as well as applications to biological questions. However, few studies have focused on the development of a high-throughput, unified sample preparation approach to complement high-throughput omic analytics.
View Article and Find Full Text PDFWe describe the use of aromatic ketones and cinnamyl ketones that have high vacuum stability for analyzing tissue sections using matrix-assisted laser desorption/ionization imaging mass spectrometry. Specifically, the matrix, (E)-4-(2,5-dihydroxyphenyl)but-3-en-2-one (2,5-cDHA) provides high sensitivity and high vacuum stability while producing small size crystals (1-2 μm). A high throughput and highly reproducible sample preparation method was developed for these matrices that first involves using an organic spray solution for small matrix crystal seeding followed by spraying of the matrix in a 30% acetonitrile/70% water solution on the tissue surface to obtain a homogeneous coating of small crystals, suitable for high spatial resolution imaging.
View Article and Find Full Text PDFState-of-the-art strategies for proteomics are not able to rapidly interrogate complex peptide mixtures in an untargeted manner with sensitive peptide and protein identification rates. We describe a data-independent acquisition (DIA) approach, microDIA (μDIA), that applies a novel tandem mass spectrometry (MS/MS) mass spectral deconvolution method to increase the specificity of tandem mass spectra acquired during proteomics experiments. Using the μDIA approach with a 10 min liquid chromatography gradient allowed detection of 3.
View Article and Find Full Text PDFIt has been widely recognized that individual cells that exist within a large population of cells, even if they are genetically identical, can have divergent molecular makeups resulting from a variety of factors, including local environmental factors and stochastic processes within each cell. Presently, numerous approaches have been described that permit the resolution of these single-cell expression differences for RNA and protein; however, relatively few techniques exist for the study of lipids and metabolites in this manner. This study presents a methodology for the analysis of metabolite and lipid expression at the level of a single cell through the use of imaging mass spectrometry on a high-performance Fourier transform ion cyclotron resonance mass spectrometer.
View Article and Find Full Text PDFThe identification of proteins from tissue specimens is a challenging area of biological research. Many current techniques for identification forfeit some level of spatial information during the sample preparation process. Recently, hydrogel technologies have been developed that perform spatially localized protein extraction and digestion prior to downstream proteomic analysis.
View Article and Find Full Text PDFAn understanding of how cells respond to perturbation is essential for biological applications; however, most approaches for profiling cellular response are limited in scope to pre-established targets. Global analysis of molecular mechanism will advance our understanding of the complex networks constituting cellular perturbation and lead to advancements in areas, such as infectious disease pathogenesis, developmental biology, pathophysiology, pharmacology, and toxicology. We have developed a high-throughput multiomics platform for comprehensive, de novo characterization of cellular mechanisms of action.
View Article and Find Full Text PDFPrefabricated surfaces containing α-cyano-4-hydroxycinnamic acid and trypsin have been developed to facilitate enzymatic digestion of endogenous tissue proteins prior to matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). Tissue sections are placed onto slides that were previously coated with α-cyano-4-hydroxycinnamic acid and trypsin. After incubation to promote enzymatic digestion, the tissue is analyzed by MALDI IMS to determine the spatial distribution of the tryptic fragments.
View Article and Find Full Text PDFQuantitative matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) approaches have historically suffered from poor accuracy and precision mainly due to the nonuniform distribution of matrix and analyte across the target surface, matrix interferences, and ionization suppression. Tandem mass spectrometry (MS/MS) can be used to ensure chemical specificity as well as improve signal-to-noise ratios by eliminating interferences from chemical noise, alleviating some concerns about dynamic range. However, conventional MALDI TOF/TOF modalities typically only scan for a single MS/MS event per laser shot, and multiplex assays require sequential analyses.
View Article and Find Full Text PDF