J Chromatogr B Analyt Technol Biomed Life Sci
December 2022
The chromatographic analysis of long-chain hydrophilic therapeutic peptides, with molecular weight mostly in the 3500-4500 Da range (31-34 amino acids), is explored with pressurized CO in the mobile phase. The optimal method was obtained on a Torus 2-PIC column, with a gradient elution of 50-90% co-solvent in CO, which is relevant of enhanced-fluidity liquid chromatography (EFLC). Both UV (210 nm) and mass spectrometric detection modes were employed to assess the purity of the major peak and its resolution from impurities.
View Article and Find Full Text PDFIn the first part of this study, a unified chromatography (UC) analysis method, which is similar to supercritical fluid chromatography (SFC) but with wide mobile phase gradients of pressurized CO and solvent, was developed to analyse short-chain peptides, with UV and mass spectrometry (MS) detection. In this second part, the method is compared to a reference reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) method, based on the analysis of 43 peptides, including 10 linear peptides and 33 cyclic ones. First, the orthogonality between the two methods was examined, based on the retention patterns.
View Article and Find Full Text PDFA method to analyse short-chain bioactive peptides (MW < 800 Da) and their impurities was developed with a unified chromatography (UC) analysis, including a wide mobile phase gradient ranging from supercritical fluid to near-liquid conditions, with UV and electrospray ionization mass spectrometry detection (ESI-MS). Four stationary phases and three mobile phase compositions were examined. Ten model peptides were first selected to identify the best operating conditions, including five linear tripeptides and five cyclic pentapeptides, with log P values ranging from -5.
View Article and Find Full Text PDFJ Pharm Biomed Anal
September 2021
Modern supercritical fluid chromatography (SFC) is now a well-established technique, especially in the field of pharmaceutical analysis. We recently demonstrated the transferability and the reproducibility of a SFC-UV method for pharmaceutical impurities by means of an inter-laboratory study. However, as this study involved only one brand of SFC instrumentation (Waters®), the present study extends the purpose to multi-instrumentation evaluation.
View Article and Find Full Text PDFAchiral packed column supercritical fluid chromatography (SFC) has shown an important regain of interest in academic and industrial laboratories in the recent years. In relation to this increased concern, major instrument manufacturers have designed some stationary phases specifically for SFC use. SFC stationary phases have been widely examined over the last two decades, based on the use of linear solvation energy relationships (LSER), which relate analyte retention to its properties and to the interaction capabilities of the chromatographic system.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2021
Biomolecules like proteins, peptides and nucleic acids widely emerge in pharmaceutical applications, either as synthetic active pharmaceutical ingredients, or from natural products as in traditional Chinese medicine. Liquid-phase chromatographic methods (LC) are widely employed for the analysis and/or purification of such molecules. On another hand, to answer the ever-increasing requests from scientists involved in biomolecules projects, other chromatographic methods emerge as useful complements to LC.
View Article and Find Full Text PDFIn this project, we aimed at analysing flavonoid-type compounds with unified chromatography (joining supercritical fluid chromatography and enhanced fluidity liquid chromatography with carbon dioxide-methanol mobile phases covering a wide range of compositions) and diode-array and electrospray ionization mass spectrometric detection (UC-DAD-ESI-MS). First, the chromatographic method was developed for 9 standard flavonoid molecules from three different families (flavanols, flavanones and flavonols, glycosylated or not), with a strong focus on mobile phase composition to achieve the elution of a wide range of flavonoids with good chromatographic quality (efficiency and resolution). For this purpose, two stationary phases were selected (ACQUITY UPC DEA and Diol), and five different additives (formic acid, citric acid, phosphoric acid, methanesulfonic acid and ammonium hydroxide) were successively introduced in the methanol co-solvent.
View Article and Find Full Text PDF