We assess racial disparities in the service quality of app-based ride-hailing services, like Uber and Lyft, by simulating their operations in the city of Chicago using empirical data. To generate driver cancellation rate disparities consistent with controlled experiments (up to twice as large for Black riders as for White riders), we estimate that more than 3% of drivers discriminate by race. We find that the capabilities of ride-hailing technology to rapidly rematch after a cancellation and prioritize long-waiting customers heavily mitigates the effects of driver discrimination on rider wait times, reducing average discrimination-induced disparities to less than 1 min-an order of magnitude less than traditional taxis.
View Article and Find Full Text PDFWe examine the relationship between electric vehicle battery chemistry and supply chain disruption vulnerability for four critical minerals: lithium, cobalt, nickel, and manganese. We compare the nickel manganese cobalt (NMC) and lithium iron phosphate (LFP) cathode chemistries by (1) mapping the supply chains for these four materials, (2) calculating a vulnerability index for each cathode chemistry for various focal countries and (3) using network flow optimization to bound uncertainties. World supply is currently vulnerable to disruptions in China for both chemistries: 80% [71% to 100%] of NMC cathodes and 92% [90% to 93%] of LFP cathodes include minerals that pass through China.
View Article and Find Full Text PDFPlug-in electric vehicles (PEVs) can reduce air emissions when charged with clean power, but prior work estimated that in 2010, PEVs produced 2 to 3 times the consequential air emission externalities of gasoline vehicles in PJM (the largest US regional transmission operator, serving 65 million people) due largely to increased generation from coal-fired power plants to charge the vehicles. We investigate how this situation has changed since 2010, where we are now, and what the largest levers are for reducing PEV consequential life cycle emission externalities in the near future. We estimate that PEV emission externalities have dropped by 17% to 18% in PJM as natural gas replaced coal, but they will remain comparable to gasoline vehicle externalities in base case trajectories through at least 2035.
View Article and Find Full Text PDFEmissions from electric vehicles depend on when they are charged and which power plants meet the electricity demand. We introduce a new metric, the critical emissions factors (CEFs), as the emissions intensity of electricity that needs to be achieved when charging to ensure electric vehicles achieve lifecycle greenhouse gas emissions parity with some of the most efficient gasoline hybrid vehicles across the United States. We use a consequential framework, consider 2018 as our reference year, and account for the effects of temperature and drive cycle on vehicle efficiency to account for regional climate and use conditions.
View Article and Find Full Text PDFTransportation network companies (TNCs), such as Uber and Lyft, have pledged to fully electrify their ridesourcing vehicle fleets by 2030 in the United States. In this paper, we introduce AgentX, a novel agent-based model built in Julia for simulating ridesourcing services with high geospatial and temporal resolution. We then instantiate this model to estimate the life cycle air pollution, greenhouse gas, and traffic externality benefits and costs of serving rides based on Chicago TNC trip data from 2019 to 2022 with fully electric vehicles.
View Article and Find Full Text PDFElectric vehicle sales have been growing rapidly in the United States and around the world. This study explores the drivers of demand for electric vehicles, examining whether this trend is primarily a result of technology improvements or changes in consumer preferences for the technology over time. We conduct a discrete choice experiment of new vehicle consumers in the United States, weighted to be representative of the population.
View Article and Find Full Text PDFHeartPrinter is a novel under-constrained 3-cable parallel wire robot designed for minimally invasive epicardial interventions. The robot adheres to the beating heart using vacuum suction at its anchor points, with a central injector head that operates within the triangular workspace formed by the anchors, and is actuated by cables for multipoint direct gene therapy injections. Minimizing cable tensions can reduce forces on the heart at the anchor points while supporting rapid delivery of accurate injections and minimizing procedure time, risk of damage to the robot, and strain to the heart.
View Article and Find Full Text PDFOn-demand ridesourcing services from transportation network companies (TNCs), such as Uber and Lyft, have reshaped urban travel and changed externality costs from vehicle emissions, congestion, crashes, and noise. To quantify these changes, we simulate replacing private vehicle travel with TNCs in six U.S.
View Article and Find Full Text PDFRidesourcing services from transportation network companies, like Uber and Lyft, serve the fastest growing share of U.S. passenger travel demand.
View Article and Find Full Text PDFWe estimate the effects of transportation network companies (TNCs) Uber and Lyft on vehicle ownership, fleet average fuel economy, and transit use in U.S. urban areas using a set of difference-in-difference propensity score-weighted regression models that exploit staggered market entry across the U.
View Article and Find Full Text PDFThe United States Corporate Average Fuel Economy (CAFE) standards and Greenhouse Gas (GHG) Emission standards are designed to reduce petroleum consumption and GHG emissions from light-duty passenger vehicles. They do so by requiring automakers to meet aggregate criteria for fleet fuel efficiency and carbon dioxide (CO2) emission rates. Several incentives for manufacturers to sell alternative fuel vehicles (AFVs) have been introduced in recent updates of CAFE/GHG policy for vehicles sold from 2012 through 2025 to help encourage a fleet technology transition.
View Article and Find Full Text PDFWe characterize regionally specific life cycle CO2 emissions per mile traveled for plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) across the United States under alternative assumptions for regional electricity emission factors, regional boundaries, and charging schemes. We find that estimates based on marginal vs average grid emission factors differ by as much as 50% (using National Electricity Reliability Commission (NERC) regional boundaries). Use of state boundaries versus NERC region boundaries results in estimates that differ by as much as 120% for the same location (using average emission factors).
View Article and Find Full Text PDFWe develop a unit commitment and economic dispatch model to estimate the operation costs and the air emissions externality costs attributable to new electric vehicle electricity demand under controlled vs uncontrolled charging schemes. We focus our analysis on the PJM Interconnection and use scenarios that characterize (1) the most recent power plant fleet for which sufficient data are available, (2) a hypothetical 2018 power plant fleet that reflects upcoming plant retirements, and (3) the 2018 fleet with increased wind capacity. We find that controlled electric vehicle charging can reduce associated generation costs by 23%-34% in part by shifting loads to lower-cost, higher-emitting coal plants.
View Article and Find Full Text PDFWe characterize the effect of regional temperature differences on battery electric vehicle (BEV) efficiency, range, and use-phase power plant CO2 emissions in the U.S. The efficiency of a BEV varies with ambient temperature due to battery efficiency and cabin climate control.
View Article and Find Full Text PDFWe assess the economic value of life-cycle air emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid-electric vehicles (PHEVs), and battery electric vehicles in the US. We find that plug-in vehicles may reduce or increase externality costs relative to grid-independent HEVs, depending largely on greenhouse gas and SO(2) emissions produced during vehicle charging and battery manufacturing. However, even if future marginal damages from emissions of battery and electricity production drop dramatically, the damage reduction potential of plug-in vehicles remains small compared to ownership cost.
View Article and Find Full Text PDF