Publications by authors named "Jeremy Mao"

Injured articular cartilage is a leading cause for osteoarthritis. We recently discovered that endogenous stem/progenitor cells not only reside in the superficial zone of mouse articular cartilage, but also regenerated heterotopic bone and cartilage . However, whether critical-size osteochondral defects can be repaired by pure induced chemotatic cell homing of these endogenous stem/progenitor cells remains elusive.

View Article and Find Full Text PDF

Utilization of the body's regenerative potential for tissue repair is known as in situ tissue regeneration. However, the use of exogenous growth factors requires delicate control of the dose and delivery strategies and may be accompanied by safety, efficacy and cost concerns. In this study, we developed, for the first time, a biomaterial-based strategy to activate endogenous transforming growth factor beta 1 (TGFβ1) under alkaline conditions for effective in situ tissue regeneration.

View Article and Find Full Text PDF

A critical cell type participating in cardiac outflow tract development is a subpopulation of the neural crest cells, the cardiac neural crest cells (NCCs), whose defect causes a spectrum of cardiovascular abnormalities. Accumulating evidence indicates that mTOR, which belongs to the PI3K-related kinase family and impacts multiple signaling pathways in a variety of contexts, plays a pivotal role for NCC development. Here, we investigated functional roles of mTOR for cardiac neural crest development using several lines of mouse genetic models.

View Article and Find Full Text PDF

Pediatric presentations of factitious disorder (Munchausen syndrome) remain underdiagnosed and poorly understood compared to adult cases. The purpose of this study is to review the current literature on child and adolescent factitious disorder in order to better understand the differences between pediatric and adult presentations of this disorder. We also present the case of an adolescent girl with factitious disorder; her hospital course draws attention to the excessive healthcare expenditures and risk of iatrogenic complications associated with this diagnosis.

View Article and Find Full Text PDF

Background: Periosteum plays critical roles in de novo bone formation and fracture repair. Wnt16 has been regarded as a key regulator in periosteum bone formation. However, the role of Wnt16 in periosteum derived cells (PDCs) osteogenic differentiation remains unclear.

View Article and Find Full Text PDF

We herein report that deletion of mTOR in dental epithelia caused defective development of multiple cell layers of the enamel organ, which culminated in tooth malformation and cystogenesis. Specifically, cells of the stellate reticulum and stratum intermedium were poorly formed, resulting in cystic changes. The pre-ameloblasts failed to elongate along the apical-basal axis and persisted vigorous expression of Sox2 and P63, which are normally downregulated during cytodifferentiation.

View Article and Find Full Text PDF

Cell-based therapies, defined here as the delivery of cells in vivo to treat disease, have recently gained increasing public attention as a potentially promising approach to restore structure and function to musculoskeletal tissues. Although cell-based therapy has the potential to improve the treatment of disorders of the musculoskeletal system, there is also the possibility of misuse and misrepresentation of the efficacy of such treatments. The medical literature contains anecdotal reports and research studies, along with web-based marketing and patient testimonials supporting cell-based therapy.

View Article and Find Full Text PDF

Cell-based therapies, defined here as the delivery of cells in vivo to treat disease, have recently gained increasing public attention as a potentially promising approach to restore structure and function to musculoskeletal tissues. Although cell-based therapy has the potential to improve the treatment of disorders of the musculoskeletal system, there is also the possibility of misuse and misrepresentation of the efficacy of such treatments. The medical literature contains anecdotal reports and research studies, along with web-based marketing and patient testimonials supporting cell-based therapy.

View Article and Find Full Text PDF

Background: Artificial meniscal scaffolds are being developed to prevent development of osteoarthritis after meniscectomy. Previously, it was reported that 3-dimensional (3D) anatomic scaffolds loaded with connective tissue growth factor (CTGF) and transforming growth factor β3 (TGF-β3) achieved meniscal regeneration in an ovine model. This was a relatively short-term study (3 months postoperative), and outcome analyses did not include magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

Cells are transplanted to regenerate an organs' parenchyma, but how transplanted parenchymal cells induce stromal regeneration is elusive. Despite the common use of a decellularized matrix, little is known as to the pivotal signals that must be restored for tissue or organ regeneration. We report that Alx3, a developmentally important gene, orchestrated adult parenchymal and stromal regeneration by directly transactivating Wnt3a and vascular endothelial growth factor.

View Article and Find Full Text PDF
Article Synopsis
  • TMJ arthritis is a debilitating condition with limited treatment options, and recent research identified DNA methyltransferase 3B (Dnmt3b) as a potential therapeutic target that can help alleviate osteoarthritic symptoms.
  • Dnmt3b levels were found to decrease as TMJ osteoarthritis progressed, and its deficiency in mice led to osteoarthritis-like symptoms, indicating its role as a suppressor of osteoarthritis.
  • Enhancing Dnmt3b function in TMJ stem cells increased beneficial collagen type II while reducing harmful collagen type X, suggesting that targeting Dnmt3b may offer new strategies for treating TMJ osteoarthritis.
View Article and Find Full Text PDF

Physicochemical and biological gradients are desirable features for hydrogels to enhance their relevance to biological environments for three-dimensional (3D) cell culture. Therefore, simple and efficient techniques to generate chemical, physical and biological gradients within hydrogels are highly desirable. This work demonstrates a technique to generate biomolecular and mechanical gradients in photocrosslinkable hydrogels by stacking and crosslinking prehydrogel solution in a layer by layer manner.

View Article and Find Full Text PDF

Concern that misinformation from direct-to-consumer marketing of largely unproven "biologic" treatments such as platelet-rich plasma and cell-based therapies may erode the public trust and the responsible investment needed to bring legitimate biological therapies to patients have resulted in calls to action from professional organizations and governing bodies. In response to substantial patient demand for biologic treatment of orthopaedic conditions, the American Academy of Orthopaedic Surgeons convened a collaborative symposium and established a consensus framework for improving and accelerating the clinical evaluation, use, and optimization of biologic therapies for musculoskeletal diseases. The economic and disease burden of musculoskeletal conditions is high.

View Article and Find Full Text PDF

Synovial joints suffer from arthritis and trauma that may be severely debilitative. Despite robust investigations in the roles of individual genes in synovial joint development and arthritis, little is known about global profiles of genes that regulate stem/progenitor cells of a synovial joint. The temporomandibular joint is a poorly understood synovial arthrosis with few clinical treatment options.

View Article and Find Full Text PDF

mTOR is a highly conserved serine/threonine protein kinase that is critical for diverse cellular processes in both developmental and physiological settings. mTOR interacts with a set of molecules including Raptor and Rictor to form two distinct functional complexes, namely the mTORC1 and mTORC2. Here, we used novel genetic models to investigate functions of the mTOR pathway for cranial neural crest cells (NCCs), which are a temporary type of cells arising from the ectoderm layer and migrate to the pharyngeal arches participating craniofacial development.

View Article and Find Full Text PDF

Skeletal mandibular hypoplasia (SMH), one of the common types of craniofacial deformities, seriously affects appearance, chewing, pronunciation, and breathing. Moreover, SMH is prone to inducing obstructive sleep apnea syndrome. We found that brain and muscle ARNT-like 1 (BMAL1), the core component of the molecular circadian oscillator, was significantly decreased in mandibles of juvenile SMH patients.

View Article and Find Full Text PDF

Each year ~5.4 million children and adolescents in the United States suffer from dental infections, leading to pulp necrosis, arrested tooth-root development and tooth loss. Apical revascularization, adopted by the American Dental Association for its perceived ability to enable postoperative tooth-root growth, is being accepted worldwide.

View Article and Find Full Text PDF

The goal of endodontics is to save teeth. Since inception, endodontic treatments are performed to obturate disinfected root canals with inert materials such as gutta-percha. Although teeth can be saved after successful endodontic treatments, they are devitalized and therefore susceptible to reinfections and fractures.

View Article and Find Full Text PDF

Organ development requires complex signaling by cells in different tissues. Epithelium and mesenchyme interactions are crucial for the development of skin, hair follicles, kidney, lungs, prostate, major glands, and teeth. Despite myriad literature on cell-cell interactions and ligand-receptor binding, the roles of extracellular vesicles in epithelium-mesenchyme interactions during organogenesis are poorly understood.

View Article and Find Full Text PDF

Focal adipose deficiency, such as lipoatrophy, lumpectomy or facial trauma, is a formidable challenge in reconstructive medicine, and yet scarcely investigated in experimental studies. Here, we report that Pyrintegrin (Ptn), a 2,4-disubstituted pyrimidine known to promote embryonic stem cells survival, is robustly adipogenic and induces postnatal adipose tissue formation in vivo of transplanted adipose stem/progenitor cells (ASCs) and recruited endogenous cells. In vitro, Ptn stimulated human adipose tissue derived ASCs to differentiate into lipid-laden adipocytes by upregulating peroxisome proliferator-activated receptor (PPARγ) and CCAAT/enhancer-binding protein-α (C/EBPα), with differentiated cells increasingly secreting adiponectin, leptin, glycerol and total triglycerides.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) in the endosteum of mesoderm-derived appendicular bones have been extensively studied. Neural crest-derived bones differ from appendicular bones in developmental origin, mode of bone formation and pathological bone resorption. Whether neural crest-derived bones harbor HSCs is elusive.

View Article and Find Full Text PDF

Apical revascularization (AR) and platelet-rich plasma have been used to restore dental pulp vitality in infected immature permanent teeth. Two regenerative therapies are cell transplantation and cell homing. This article updates and benchmarks these therapies with cell homing.

View Article and Find Full Text PDF

Endothelial progenitor cells/endothelial cells (EPCs/ECs) have great potential to treat pathological conditions such as cardiac infarction, muscle ischemia, and bone fractures, but isolation of EPC/ECs from existing cell sources is challenging due to their low EC frequency. We have isolated endothelial progenitor (EP)-like cells from rat oral mucosa and characterized their yield, immunophenotype, growth, and in vivo angiogenic potential. The frequency of EP-like cells derived from oral mucosa is thousands of folds higher than EPCs derived from donor-match bone marrow samples.

View Article and Find Full Text PDF

Tissue regeneration using stem cell-based transplantation faces many hurdles. Alternatively, therapeutically exploiting endogenous stem cells to regenerate injured or diseased tissue may circumvent these challenges. Here we show resident fibrocartilage stem cells (FCSCs) can be used to regenerate and repair cartilage.

View Article and Find Full Text PDF

Regenerative endodontics has been proposed to replace damaged and underdeveloped tooth structures with normal pulp-dentin tissue by providing a natural extracellular matrix (ECM) mimicking environment; stem cells, signaling molecules, and scaffolds. In addition, clinical success of the regenerative endodontic treatments can be evidenced by absence of signs and symptoms; no bony pathology, a disinfected pulp, and the maturation of root dentin in length and thickness. In spite of the various approaches of regenerative endodontics, there are several major challenges that remain to be improved: a) the endodontic root canal is a strong harbor of the endodontic bacterial biofilm and the fundamental etiologic factors of recurrent endodontic diseases, (b) tooth discolorations are caused by antibiotics and filling materials, (c) cervical root fractures are caused by endodontic medicaments, (d) pulp tissue is not vascularized nor innervated, and (e) the dentin matrix is not developed with adequate root thickness and length.

View Article and Find Full Text PDF