Transition metal-based anticancer compounds, as an alternative to platinum derivatives, are raising scientific interest as they may present distinct although poorly understood mechanisms of action. We used a structure-activity relationship-based methodology to investigate the chemical and biological features of a series of ten (C^N)-chelated half-sandwich iridiumIII complexes of the general formula [IrCp*(phox)Cl], where (phox) is a 2-phenyloxazoline ligand forming a 5-membered metallacycle. This series of compounds undergoes a fast exchange of their chlorido ligand once solubilised in DMSO.
View Article and Find Full Text PDFThe enantiomeric state of a supramolecular copper catalyst can be switched in situ in ca. five seconds. The dynamic property of the catalyst is provided by the non-covalent nature of the helical assemblies supporting the copper centers.
View Article and Find Full Text PDFArtificial metalloenzymes result from anchoring an active catalyst within a protein environment. Toward this goal, various localization strategies have been pursued: covalent, supramolecular, or dative anchoring. Herein we show that introduction of a suitably positioned histidine residue contributes to firmly anchor, via a dative bond, a biotinylated rhodium piano stool complex within streptavidin.
View Article and Find Full Text PDFThe mode of action of precious metal anticancer metallodrugs is generally believed to involve DNA as a target. However, the poor specificity of such drugs often requires high doses and leads to undesirable side-effects. With the aim of improving the specificity of a ruthenium piano-stool complex towards DNA, we employed a presenter protein strategy based on the biotin-avidin technology.
View Article and Find Full Text PDF