The p53 tumor suppressor is a key regulator of cell growth and survival upon various forms of cellular stress. p53 is a redox-regulated transcription factor that binds specifically to DNA and activates transcription of target genes. The core domain of p53 holds a zinc atom that protects p53 from oxidation and is critical for DNA binding.
View Article and Find Full Text PDFRestoration of wild-type p53 expression triggers cell death and eliminates tumors in vivo. The identification of mutant p53-reactivating small molecules such as PRIMA-1 opens possibilities for the development of more efficient anticancer drugs. Although the biological effects of PRIMA-1 are well demonstrated, little is known about its molecular mechanism of action.
View Article and Find Full Text PDFReactivation of mutant p53 in human tumor cells should induce cell death by apoptosis and thus eliminate the tumor. Several small molecules that reactivate mutant p53 have been identified. Here we show that STIMA-1, a low molecular weight compound with some structural similarities to the previously identified molecule CP-31398, can stimulate mutant p53 DNA binding in vitro and induce expression of p53 target proteins and trigger apoptosis in mutant p53-expressing human tumor cells.
View Article and Find Full Text PDFReactivation of the tumor suppressor activity to mutant p53 should trigger massive apoptosis and eliminate tumors. The low molecular weight compounds PRIMA-1 and the structural analog PRIMA-1MET reactivate human mutant p53 in vitro and suppress growth of human tumor xenografts in SCID mice. However, little is known about their effect on mouse mutant p53 in mouse tumor cells.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is highly lethal due to limited curative options. In high-incidence regions, such as parts of Africa and Southeastern Asia, >50% of cases carry an AGG to AGT mutation at codon 249 of the TP53 gene, considered as a 'signature' of mutagenesis by aflatoxins. The protein product, p53ser249, may represent a therapeutic target for HCC.
View Article and Find Full Text PDF