Publications by authors named "Jeremy M Lott"

During allogeneic hematopoietic cell transplantation (alloHCT), nonhematopoietic cell interleukin-33 (IL-33) is augmented and released by recipient conditioning to promote type 1 alloimmunity and lethal acute graft-versus-host disease (GVHD). Yet, IL-33 is highly pleiotropic and exhibits potent immunoregulatory properties in the absence of coincident proinflammatory stimuli. We tested whether peri-alloHCT IL-33 delivery can protect against development of GVHD by augmenting IL-33-associated regulatory mechanisms.

View Article and Find Full Text PDF

IL-33 is a more recently identified member of the IL-1 cytokine family, expressed in the nucleus of epithelial cells and released into the extracellular space following tissue damage. The impact of IL-33 as a regulator of the adaptive immune response has been studied extensively, with an understood role for IL-33 in the effector functions of CD4(+) Th2 cells. IL-33, however, is now being shown to initiate the Th2-polarizing function of DCs, and stimulate the secretion of the type 2-associated cytokines, IL-4, IL-5, and IL-13, from tissue-resident innate-immune cells, especially ILCs and MCs.

View Article and Find Full Text PDF

IL-33 is a recently characterized IL-1 family member that is proposed to function as an alarmin, or endogenous signal of cellular damage, as well as act as a pleiotropic cytokine. The ability of IL-33 to potentiate both Th1 and Th2 immunity supports its role in pathogen clearance and disease immunopathology. Yet, IL-33 restrains experimental colitis and transplant rejection by expanding regulatory T cells (Treg) via an undefined mechanism.

View Article and Find Full Text PDF

Rationale: Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease characterized by progressive scarring and matrix deposition. Recent reports highlight an autoimmune component in IPF pathogenesis. We have reported anti-col(V) immunity in IPF patients.

View Article and Find Full Text PDF

Extracellular antigens are internalized and processed before binding MHC class II molecules within endosomal and lysosomal compartments of professional antigen presenting cells (APC) for subsequent presentation to T cells. Yet select cytoplasmic peptides derived from autoantigens also intersect and bind class II molecules via an unknown mechanism. In human B lymphoblasts, inhibition of the peptide transporter associated with antigen processing (TAP) failed to alter class II-restricted cytoplasmic epitope presentation.

View Article and Find Full Text PDF