Publications by authors named "Jeremy M Hix"

Polylactide (PLA) is the most widely utilized biopolymer in medicine. However, chronic inflammation and excessive fibrosis resulting from its degradation remain significant obstacles to extended clinical use. Immune cell activation has been correlated to the acidity of breakdown products, yet methods to neutralize the pH have not significantly reduced adverse responses.

View Article and Find Full Text PDF

Repairing peripheral nerve injuries remains a clinical challenge. To enhance nerve regeneration and functional recovery, the use of auxiliary implantable biomaterial conduits has become widespread. After implantation, there is currently no way to assess the location or function of polymeric biomedical devices, as they cannot be easily differentiated from surrounding tissue using clinical imaging modalities.

View Article and Find Full Text PDF

Longitudinal radiological monitoring of biomedical devices is increasingly important, driven by risk of device failure following implantation. Polymeric devices are poorly visualized with clinical imaging, hampering efforts to use diagnostic imaging to predict failure and enable intervention. Introducing nanoparticle contrast agents into polymers is a potential method for creating radiopaque materials that can be monitored via computed tomography.

View Article and Find Full Text PDF

Canine histiocytic sarcoma is a highly aggressive and metastatic hematopoietic neoplasm that responds poorly to currently available treatment regimens. Our goal was to establish a clinically relevant xenograft mouse model to assess the preclinical efficacy of novel cancer treatment protocols for histiocytic sarcoma. We developed an intrasplenic xenograft mouse model characterized by consistent tumor growth and development of metastasis to the liver and other abdominal organs.

View Article and Find Full Text PDF

Purpose: To initiate the archive of relaxation-weighted images that may help discriminate between pulmonary pathologies relevant to acute respiratory distress syndrome. MRI has the ability to distinguish pathologies by providing a variety of different contrast mechanisms. Lungs have historically been difficult to image with MRI but image quality is sufficient to begin cataloging the appearance of pathologies in T - and T -weighted images.

View Article and Find Full Text PDF

Animal models play a critical role in the study of acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI). One limitation has been the lack of a suitable method for serial assessment of acute lung injury (ALI) in vivo. In this study, we demonstrate the sensitivity of magnetic resonance imaging (MRI) to assess ALI in real time in rat models of VILI.

View Article and Find Full Text PDF