In 1938, the first distal femur of a fossil Australopithecus was discovered at Sterkfontein, South Africa. A decade later, another distal femur was discovered at the same locality. These two fossil femora were the subject of a foundational paper authored by Kingsbury Heiple and Owen Lovejoy in 1971.
View Article and Find Full Text PDFThe forelimbs of hominoid primates (apes) are decidedly more flexible than those of monkeys, especially at the shoulder, elbow and wrist joints. It is tempting to link the greater mobility of these joints to the functional demands of vertical climbing and below-branch suspension, but field-based kinematic studies have found few differences between chimpanzees and monkeys when comparing forelimb excursion angles during vertical ascent (upclimbing). There is, however, a strong theoretical argument for focusing instead on vertical descent (downclimbing), which motivated us to quantify the effects of climbing directionality on the forelimb kinematics of wild chimpanzees () and sooty mangabeys ().
View Article and Find Full Text PDFThe Kromdraai site in South Africa has yielded numerous early hominin fossils since 1938. As a part of recent excavations within Unit P, a largely complete early hominin calcaneus (KW 6302) was discovered. Due to its role in locomotion, the calcaneus has the potential to reveal important form/function relationships.
View Article and Find Full Text PDFBipedal locomotion is a hallmark of being human. Yet the body form from which bipedalism evolved remains unclear. Specifically, the positional behaviour (i.
View Article and Find Full Text PDFBipedal trackways discovered in 1978 at Laetoli site G, Tanzania and dated to 3.66 million years ago are widely accepted as the oldest unequivocal evidence of obligate bipedalism in the human lineage. Another trackway discovered two years earlier at nearby site A was partially excavated and attributed to a hominin, but curious affinities with bears (ursids) marginalized its importance to the paleoanthropological community, and the location of these footprints fell into obscurity.
View Article and Find Full Text PDFThe evolution of bipedalism and reduced reliance on arboreality in hominins resulted in larger lower limb joints relative to the joints of the upper limb. The pattern and timing of this transition, however, remains unresolved. Here, we find the limb joint proportions of , , and to resemble those of modern humans, whereas those of , , , , , and are more ape-like.
View Article and Find Full Text PDFModern humans have the longest Achilles tendon (AT) of all the living primates. It has been proposed that this anatomy increases locomotor efficiency and that its elongation may have played a crucial role in the origin and early evolution of the genus Homo. Unfortunately, determining the length of the AT in extinct hominins has been difficult as tendons do not fossilize.
View Article and Find Full Text PDFHominin birth mechanics have been examined and debated from limited and often fragmentary fossil pelvic material. Some have proposed that birth in the early hominin genus Australopithecus was relatively easy and ape-like, while others have argued for a more complex, human-like birth mechanism in australopiths. Still others have hypothesized a unique birth mechanism, with no known modern equivalent.
View Article and Find Full Text PDFThe abundant femoral assemblage of Homo naledi found in the Dinaledi Chamber provides a unique opportunity to test hypotheses regarding the taxonomy, locomotion, and loading patterns of this species. Here we describe neck and shaft cross-sectional structure of all the femoral fossils recovered in the Dinaledi Chamber and compare them to a broad sample of fossil hominins, recent humans, and extant apes. Cross-sectional geometric (CSG) properties from the femoral neck (base of neck and midneck) and diaphysis (subtrochanteric region and midshaft) were obtained through CT scans for H.
View Article and Find Full Text PDFObjectives: The femoral remains recovered from the Lesedi Chamber are among the most complete South African fossil hominin femora discovered to date and offer new and valuable insights into the anatomy and variation of the bone in Homo naledi. While the femur is one of the best represented postcranial elements in the H. naledi assemblage from the Dinaledi Chamber, the fragmentary and commingled nature of the Dinaledi femoral remains has impeded the assessment of this element in its complete state.
View Article and Find Full Text PDFThere are 26 bones in each foot (52 in total), meaning that roughly a quarter of the human skeleton consists of foot bones. Yet, early hominin foot fossils are frustratingly rare, making it quite difficult to reconstruct the evolutionary history of the human foot. Despite the continued paucity of hominid or hominin foot fossils from the late Miocene and early Pliocene, the last decade has witnessed the discovery of an extraordinary number of early hominin foot bones, inviting a reassessment of how the human foot evolved, and providing fresh new evidence for locomotor diversity throughout hominin evolution.
View Article and Find Full Text PDFThe evolution of bipedalism in the hominin lineage has shaped the posterior human calcaneus into a large, robust structure considered to be adaptive for dissipating peak compressive forces and energy during heel-strike. A unique anatomy thought to contribute to the human calcaneus and its function is the lateral plantar process (LPP). While it has long been known that humans possess a plantarly positioned LPP and apes possess a more dorsally positioned homologous structure, the relative position of the LPP and intraspecific variation of this structure have never been quantified.
View Article and Find Full Text PDFThe functional and evolutionary implications of primitive retentions in early hominin feet have been under debate since the discovery of . Ontogeny can provide insight into adult phenotypes, but juvenile early hominin foot fossils are exceptionally rare. We analyze a nearly complete, 3.
View Article and Find Full Text PDFRosas (Reports, 22 September 2017, p. 1282) calculate El Sidrón J1 to have reached only 87.5% of its adult brain size.
View Article and Find Full Text PDFThe Rising Star cave system has produced abundant fossil hominin remains within the Dinaledi Chamber, representing a minimum of 15 individuals attributed to . Further exploration led to the discovery of hominin material, now comprising 131 hominin specimens, within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context for hominin remains.
View Article and Find Full Text PDFBirth mechanics in early hominins are often reconstructed based on cephalopelvic proportions, with little attention paid to neonatal shoulders. Here, we find that neonatal biacromial breadth can be estimated from adult clavicular length (R = 0.80) in primates.
View Article and Find Full Text PDFNo bone in the human postcranial skeleton differs more dramatically from its match in an ape skeleton than the pelvis. Humans have evolved a specialized pelvis, well-adapted for the rigors of bipedal locomotion. Precisely how this happened has been the subject of great interest and contention in the paleoanthropological literature.
View Article and Find Full Text PDFThe pelvis is an anatomically complex and functionally informative bone that contributes directly to both human locomotion and obstetrics. Because of the pelvis' important role in obstetrics, it is one of the most sexually dimorphic bony elements of the human body. The complex intersection of pelvic dimorphism, locomotion, and obstetrics has been reenergized by exciting new research, and many papers in this special issue of the pelvis help provide clarity on the relationship between pelvic form (especially female) and locomotor function.
View Article and Find Full Text PDFThis paper describes the 108 femoral, patellar, tibial, and fibular elements of a new species of Homo (Homo naledi) discovered in the Dinaledi chamber of the Rising Star cave system in South Africa. Homo naledi possesses a mosaic of primitive, derived, and unique traits functionally indicative of a bipedal hominin adapted for long distance walking and possibly running. Traits shared with australopiths include an anteroposteriorly compressed femoral neck, a mediolaterally compressed tibia, and a relatively circular fibular neck.
View Article and Find Full Text PDFCharacterizing australopith pelvic morphology has been difficult in part because of limited fossilized pelvic material. Here, we reassess the morphology of an under-studied adult right ilium and pubis (Sts 65) from Member 4 of Sterkfontein, South Africa, and provide a hypothetical digital reconstruction of its overall pelvic morphology. The small size of the pelvis, presence of a preauricular sulcus, and shape of the sciatic notch allow us to agree with past interpretations that Sts 65 likely belonged to a female.
View Article and Find Full Text PDFBackground: Walking mechanics are influenced by body morphology. Foot arch height is one aspect of body morphology central to walking. However, generalizations about the relationship between arch height and walking are limited due to previous methodologies used for measuring the arch and the populations that have been studied.
View Article and Find Full Text PDFFunding agencies and institutions are creating initiatives to encourage interdisciplinary research that can be more easily translated into community initiatives to enhance health. Therefore, the current research environment calls for interdisciplinary education and skills to create sustained partnerships with community institutions. However, formalized opportunities in both of these areas are limited for students embarking on research careers.
View Article and Find Full Text PDFHomo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H.
View Article and Find Full Text PDF