Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can provide valuable insights into the metabolome of complex biological systems such as organ tissues and cells. However, obtaining metabolite data at single-cell spatial resolutions presents a few technological challenges. Generally, spatial resolution is defined by the increment the sample stage moves between laser ablation spots.
View Article and Find Full Text PDFFront Mol Neurosci
September 2022
CuATSM has repeatedly demonstrated to be therapeutically effective in mouse models of amyotrophic lateral sclerosis (ALS), leading to current clinical trials. CuATSM acts to stabilize ALS-associated mutant SOD1 protein by supplying copper. However, work has demonstrated that CuATSM is only therapeutic for wild-type-like SOD1 mutants, not metal-binding-region mutants, suggesting that CuATSM may have genotype-specific effects.
View Article and Find Full Text PDFRoutine cell culture reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) gene expression analysis is limited in scalability due to minimum sample requirement and multistep isolation procedures. In this study, we aimed to optimize and apply a cost-effective and rapid protocol for directly sampling gene expression data from microplate cell cultures. The optimized protocol involves direct lysis of microplate well population followed by a reduced thermocycler reaction time one-step RT-qPCR assay.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder, characterised by the loss of motor neurons and subsequent paralysis. Evidence indicates that synaptic alterations are associated with the early stages of ALS pathogenesis. A hallmark of ALS postmortem tissue is the presence of proteinaceous inclusions, indicative of disturbed protein homeostasis, particularly in spinal cord motor neurons.
View Article and Find Full Text PDFThe synthetic copper-containing compound, CuATSM, has emerged as one of the most promising drug candidates developed for the treatment of amyotrophic lateral sclerosis (ALS). Multiple studies have reported CuATSM treatment provides therapeutic efficacy in various mouse models of ALS without any observable adverse effects. Moreover, recent results from an open label clinical study suggested that daily oral dosing with CuATSM slows disease progression in patients with both sporadic and familial ALS, providing encouraging support for CuATSM in the treatment of ALS.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
August 2021
Methadone maintenance treatment (MMT) is the most common treatment for opioid-dependent pregnant women worldwide. Despite its widespread use, MMT is associated with a variety of adverse neurodevelopmental outcomes in exposed offspring, particularly cognitive impairments. The neurobiological abnormalities underlying these cognitive impairments are, however, poorly understood.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of the motor neurons that innervate muscle, resulting in gradual paralysis and culminating in the inability to breathe or swallow. This neuronal degeneration occurs in a spatiotemporal manner from a point of onset in the central nervous system (CNS), suggesting that there is a molecule that spreads from cell-to-cell. There is strong evidence that the onset and progression of ALS pathology is a consequence of protein misfolding and aggregation.
View Article and Find Full Text PDFA major feature of amyotrophic lateral sclerosis (ALS) pathology is the accumulation of ubiquitin (Ub) into intracellular inclusions. This sequestration of Ub may reduce the availability of free Ub, disrupting Ub homeostasis and ultimately compromising cellular function and survival. We previously reported significant disturbance of Ub homeostasis in neuronal-like cells expressing mutant SOD1.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
June 2021
Rationale: There is increasing concern regarding the use of selective serotonin reuptake inhibitors (SSRIs) in pregnancy. Animal studies repeatedly show increased anxiety- and depressive-like behaviours in offspring exposed perinatally to SSRIs, however much of this research is in male offspring.
Objectives: The primary aim of this study was to investigate the effects of perinatal SSRI exposure on emotionality-related behaviours in female offspring and associated glutamatergic markers, in Sprague-Dawley (SD) rats and in the Wistar-Kyoto (WKY) rat model of depression.
Traumatic events during early life have been linked with later life psychopathology. To understand this risk factor, researchers have studied the effects of prenatal and postnatal early life stress on neurochemical changes. Here we review the rodent literature on sex differences and sex-specific impact of early life stress on frontal cortex neurochemistry.
View Article and Find Full Text PDFBackground: Western pattern diets induce neuroinflammation and impair cognitive behavior in humans and animals. Neuroinflammation and cognitive impairment have been associated with microbiota dysbiosis, through the gut-brain axis. Furthermore, microbiota-accessible carbohydrates (MACs) found in dietary fiber are important in shaping the microbial ecosystem and have the potential to improve the gut-brain-axis.
View Article and Find Full Text PDFCognitive impairment is a major source of disability in schizophrenia and current antipsychotic drugs (APDs) have minimal efficacy for this symptom domain. Cannabidiol (CBD), the major non-intoxicating component of Cannabis sativa L., exhibits antipsychotic and neuroprotective properties.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
December 2019
The mainstay treatment for schizophrenia is antipsychotic drugs (APDs), which are mostly effective against the positive symptoms (e.g. hallucinations), but provide minimal benefits for the negative symptoms (e.
View Article and Find Full Text PDFJ Psychopharmacol
February 2019
Background: With approximately 10% of pregnant women prescribed antidepressant drugs for the treatment of depressive disorders, there is growing concern regarding the potential long-term effects of this exposure on offspring. Research is needed in clinically relevant models to determine the effects on offspring behaviour and associated neurobiological systems.
Aim: The aim of this study was to determine the effects of maternal fluoxetine treatment on anxiety-like and depressive-like behaviours in adolescent offspring as well as associated glutamatergic markers, using a clinically relevant rodent model of depression.
Dysfunction of the glutamatergic system is believed to underlie many neurodevelopmental disorders including autism, Rett syndrome and schizophrenia. Metabotropic glutamate receptor (mGluR5) positive allosteric modulators (PAM) potentiate glutamatergic signaling, particularly indirectly via the NMDA receptor. Preclinical studies report mGluR5 PAMs can improve schizophrenia-relevant behaviours.
View Article and Find Full Text PDFBackground: The nucleus accumbens (NAcc) has been implicated in the pathology and treatment of schizophrenia. Recent postmortem evidence suggests a hyperglutamatergic state in the NAcc. With the present study we aimed to explore possible glutamatergic alterations in the NAcc of a large schizophrenia cohort.
View Article and Find Full Text PDFThe D2 receptor partial agonist, aripiprazole, has shown increased therapeutic efficacy for schizophrenia, autism and Tourette's syndrome compared to traditional antipsychotics such as the D2 receptor antagonist, haloperidol. Recent evidence suggests this superior profile may be associated with downstream effects on glutamatergic synapses. Group 1 metabotropic glutamate receptors (mGluRs) and their endogenous modulators, Norbin and Homer1, are regulated by D2 receptor activity, particularly within the nucleus accumbens (NAc), a target region of aripiprazole and haloperidol.
View Article and Find Full Text PDFCurrent asthma treatments address symptoms rather than the underlying disease pathophysiology, a better understanding of which has led to the identification of the Th2 high endotype. The activation of Toll-like receptors to induce Type I interferons directly in the lungs represents a novel therapeutic approach to reset this underlying Th2 pathophysiology with the potential to provide long-term disease modification. We present the nonclinical data and phase I clinical profile of an inhaled TLR9 agonist, AZD1419, a C-type CpG designed to induce interferon in the lung.
View Article and Find Full Text PDFGroup 1 metabotropic glutamate receptors (mGluR1/mGluR5) play an integral role in neurodevelopment and are implicated in psychiatric disorders, such as schizophrenia. mGluR1 and mGluR5 are expressed as homodimers, which is important for their functionality and pharmacology. We examined the protein expression of dimeric and monomeric mGluR1α and mGluR5 in the prefrontal cortex (PFC) and hippocampus throughout development (juvenile/adolescence/adulthood) and in the perinatal phencyclidine (PCP) model of schizophrenia.
View Article and Find Full Text PDFAlzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases, yet current therapeutic treatments are inadequate due to a complex disease pathogenesis. The plant polyphenol apigenin has been shown to have anti-inflammatory and neuroprotective properties in a number of cell and animal models; however a comprehensive assessment has not been performed in a human model of AD. Here we have used a human induced pluripotent stem cell (iPSC) model of familial and sporadic AD, in addition to healthy controls, to assess the neuroprotective activity of apigenin.
View Article and Find Full Text PDFAlterations of postsynaptic density (PSD)95-complex proteins in schizophrenia ostensibly induce deficits in synaptic plasticity, the molecular process underlying cognitive functions. Although some PSD95-complex proteins have been previously examined in the hippocampus in schizophrenia, the status of other equally important molecules is unclear. This is especially true in the cornu ammonis (CA)1 hippocampal subfield, a region that is critically involved in the pathophysiology of the illness.
View Article and Find Full Text PDF