Background Context: 3D-printed titanium cage designs can incorporate complex, porous features for bone ingrowth and a greater surface area for minimizing subsidence. In a companion study (Part 1), we determined that increased surface area leads to decreased subsidence; however, it remains unclear how increasing the cage surface area, resulting in a smaller graft aperture, influences fusion.
Purpose: We evaluated the effects of surface area of 3D-printed titanium cages and the use of autologous bone grafts on spinal fusion in sheep.
Study Design: Controlled animal study.
Objective: To assess the cellular contribution of autograft to spinal fusion and determine the effects of intraoperative storage conditions on fusion.
Summary Of Background Data: Autograft is considered the gold standard graft material in spinal fusion, purportedly due to its osteogenic properties.
Background: Adipose tissue is an easily accessible source of stem and progenitor cells that offers exciting promise as an injectable autologous therapeutic for regenerative applications. Mechanical processing is preferred over enzymatic digestion, and the most common method involves shuffling lipoaspirate between syringes and filtering to produce nanofat. Although nanofat has shown exciting clinical results, the authors hypothesized that new device designs could enhance recovery of stem/progenitor cells through optimization of fluid dynamics principles, integration, and automation.
View Article and Find Full Text PDFThere is growing interest in breaking down tissues into the individual cellular constituents so that those cells can be identified, assayed for functional characteristics, or utilized for therapeutic purposes. A major driver is the development of single cell analysis methods, which are best poised to assess cellular heterogeneity and discover rare cells. Current tissue dissociation methods are inefficient, produce variable results, and require many labor-intensive, time-consuming steps.
View Article and Find Full Text PDFTissues are complex mixtures of different cell subtypes, and this diversity is increasingly characterized using high-throughput single cell analysis methods. However, these efforts are hindered, as tissues must first be dissociated into single cell suspensions using methods that are often inefficient, labor-intensive, highly variable, and potentially biased towards certain cell subtypes. Here, we present a microfluidic platform consisting of three tissue processing technologies that combine tissue digestion, disaggregation, and filtration.
View Article and Find Full Text PDFTissues are increasingly being analyzed at the single cell level in order to characterize cellular diversity and identify rare cell types. Single cell analysis efforts are greatly limited, however, by the need to first break down tissues into single cell suspensions. Current dissociation methods are inefficient, leaving a significant portion of the tissue as aggregates that are filtered away or left to confound results.
View Article and Find Full Text PDFMaximizing the speed and efficiency at which single cells can be liberated from tissues would dramatically advance cell-based diagnostics and therapies. Conventional methods involve numerous manual processing steps and long enzymatic digestion times, yet are still inefficient. In previous work, we developed a microfluidic device with a network of branching channels to improve the dissociation of cell aggregates into single cells.
View Article and Find Full Text PDFEconomically competitive microbial production of biorenewable fuels and chemicals is often impeded by toxicity of the product to the microbe. Membrane damage is often identified as a major mechanism of this toxicity. Prior efforts to strengthen the microbial membrane by changing the phospholipid distribution have largely focused on the fatty acid tails.
View Article and Find Full Text PDF