Publications by authors named "Jeremy Kawahara"

In recent years, deep learning (DL) has shown great potential in the field of dermatological image analysis. However, existing datasets in this domain have significant limitations, including a small number of image samples, limited disease conditions, insufficient annotations, and non-standardized image acquisitions. To address these shortcomings, we propose a novel framework called DermSynth3D.

View Article and Find Full Text PDF

We present an automated approach to detect and longitudinally track skin lesions on 3D total-body skin surface scans. The acquired 3D mesh of the subject is unwrapped to a 2D texture image, where a trained objected detection model, Faster R-CNN, localizes the lesions within the 2D domain. These detected skin lesions are mapped back to the 3D surface of the subject and, for subjects imaged multiple times, we construct a graph-based matching procedure to longitudinally track lesions that considers the anatomical correspondences among pairs of meshes and the geodesic proximity of corresponding lesions and the inter-lesion geodesic distances.

View Article and Find Full Text PDF

Automated machine learning approaches to skin lesion diagnosis from images are approaching dermatologist-level performance. However, current machine learning approaches that suggest management decisions rely on predicting the underlying skin condition to infer a management decision without considering the variability of management decisions that may exist within a single condition. We present the first work to explore image-based prediction of clinical management decisions directly without explicitly predicting the diagnosis.

View Article and Find Full Text PDF

The presence of certain clinical dermoscopic features within a skin lesion may indicate melanoma, and automatically detecting these features may lead to more quantitative and reproducible diagnoses. We reformulate the task of classifying clinical dermoscopic features within superpixels as a segmentation problem, and propose a fully convolutional neural network to detect clinical dermoscopic features from dermoscopy skin lesion images. Our neural network architecture uses interpolated feature maps from several intermediate network layers, and addresses imbalanced labels by minimizing a negative multilabel Dice-F score, where the score is computed across the minibatch for each label.

View Article and Find Full Text PDF

We propose a multi-task deep convolutional neural network, trained on multi-modal data (clinical and dermoscopic images, and patient meta-data), to classify the 7-point melanoma checklist criteria and perform skin lesion diagnosis. Our neural network is trained using several multi-task loss functions, where each loss considers different combinations of the input modalities, which allows our model to be robust to missing data at inference time. Our final model classifies the 7-point checklist and skin condition diagnosis, produces multi-modal feature vectors suitable for image retrieval, and localizes clinically discriminant regions.

View Article and Find Full Text PDF

Background And Objective: Feature reduction is an essential stage in computer aided breast cancer diagnosis systems. Multilayer neural networks can be trained to extract relevant features by encoding high-dimensional data into low-dimensional codes. Optimizing traditional auto-encoders works well only if the initial weights are close to a proper solution.

View Article and Find Full Text PDF

We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm.

View Article and Find Full Text PDF

Laparoscopic ultrasound (US) is often used during partial nephrectomy surgeries to identify tumour boundaries within the kidney. However, visual identification is challenging as tumour appearance varies across patients and US images exhibit significant noise levels. To address these challenges, we present the first fully automatic method for detecting the presence of kidney tumour in free-hand laparoscopic ultrasound sequences in near real-time.

View Article and Find Full Text PDF