Publications by authors named "Jeremy K Moore"

Purpose: To design a fluorine MRI/MR spectroscopy approach to quantify renal vascular damage after ischemia-reperfusion injury, and the therapeutic response to antithrombin nanoparticles (NPs) to protect kidney function.

Methods: A total of 53 rats underwent 45 min of bilateral renal artery occlusion and were treated at reperfusion with either plain perfluorocarbon NPs or NPs functionalized with a direct thrombin inhibitor (PPACK:phenyalanine-proline-arginine-chloromethylketone). Three hours after reperfusion, kidneys underwent ex vivo fluorine MRI/MR spectroscopy at 4.

View Article and Find Full Text PDF

Hyperbranched amine polymers (HAS) grown from the mesoporous silica SBA-15 (hereafter "SBA-15-HAS") exhibit large capacities for CO2 adsorption. We have used static in situ and magic-angle spinning (MAS) ex situ (13)C nuclear magnetic resonance (NMR) to examine the adsorption of CO2 by SBA-15-HAS. (13)C NMR distinguishes the signal of gas-phase (13)CO2 from that of the chemisorbed species.

View Article and Find Full Text PDF

A new class of low-barrier molecular rotors, metal trans-dihydrides, is suggested here. To test whether rapid rotation can be achieved, the known complex trans-H2Pt(P(t)Bu3)2 was experimentally studied by (2)H and (195)Pt solid-state NMR spectroscopy (powder pattern changes with temperature) and computationally modeled as a (t)Bu3P-Pt-P(t)Bu3 stator with a spinning H-Pt-H rotator. Whereas the related chloro-hydride complex, trans-H(Cl)Pt(P(t)Bu3)2, does not show rotational behavior at room temperature, the dihydride trans-H2Pt(P(t)Bu3)2 rotates fast on the NMR time scale, even at low temperatures down to at least 75 K.

View Article and Find Full Text PDF

In the conversion of CO2 to mineral carbonates for the permanent geosequestration of CO2, there are multiple magnesium carbonate phases that are potential reaction products. Solid-state (13)C NMR is demonstrated as an effective tool for distinguishing magnesium carbonate phases and quantitatively characterizing magnesium carbonate mixtures. Several of these mineral phases include magnesite, hydromagnesite, dypingite, and nesquehonite, which differ in composition by the number of waters of hydration or the number of crystallographic hydroxyl groups.

View Article and Find Full Text PDF