Objective To conduct research to show the value of text mining for automatically identifying suspected bleeding adverse drug events (ADEs) in the emergency department (ED). Methods A corpus of ED admission notes was manually annotated for bleeding ADEs. The notes were taken for patients ≥ 65 years of age who had an ICD-9 code for bleeding, the presence of hemoglobin value ≤ 8 g/dL, or were transfused > 2 units of packed red blood cells.
View Article and Find Full Text PDFBackground: The problems of correlation and classification are long-standing in the fields of statistics and machine learning, and techniques have been developed to address these problems. We are now in the era of high-dimensional data, which is data that can concern billions of variables. These data present new challenges.
View Article and Find Full Text PDF