Climate change is associated with an increased frequency and intensity of heat waves, posing a threat of heat stress to pig production. Heat stress compromises the efficiency of pig production partly due to causing oxidative stress, intestinal dysfunction, and inflammatory responses. Superoxide dismutase is an antioxidant enzyme reported to reduce oxidative stress and inflammation.
View Article and Find Full Text PDFHeat stress (HS) compromises productivity of pork production, in part as a result of increased oxidative stress and inflammatory responses, particularly within the gastrointestinal tract. This study aimed to investigate whether plant-derived betaine and isoquinoline alkaloids could ameliorate HS in pigs. Fifty female Large White × Landrace grower pigs, which were acclimated to control (CON), control plus betaine (BET), or control plus isoquinoline alkaloids (IQA) diets for 14 days were then exposed to heat stress or thermoneutral condition.
View Article and Find Full Text PDFIn a 2 × 2 factorial design, 60 male Ross-308 broilers were fed either a control or 1 g/kg betaine diet and housed under thermoneutral (TN) or heat stress (HS) conditions. Broilers were acclimated to diets for 1 week under TN (25 °C), then either kept at TN or HS, where the temperature increased 8 h/day at 33 °C and 16 h/day at 25 °C for up to 10 days. Respiration rate (RR) was measured at four time points, and on each of 1, 2, 3, 7 and 10 days of HS, 12 broilers were injected with 0.
View Article and Find Full Text PDFHeat stress (HS) is an environmental stressor challenging poultry production and requires a strategy to cope with it. A total of 288-day-old male broiler chicks were fed with one of the following diets: basal diet, basal with betaine (BET), or with selenium and vitamin E (AOX), or with a combination of BET and AOX, under thermoneutral and cyclic HS. Results showed that HS reduced average daily feed intake (ADFI) ( = 0.
View Article and Find Full Text PDFObjective: Heat stress (HS) triggers oxidative stress and respiratory alkalosis in pigs. The objective of this experiment was to study whether a short-term supranutritional amount of dietary vitamin E (VE) can mitigate oxidative stress and respiratory alkalosis in heat-stressed pigs.
Methods: A total of 24 pigs were given either a control diet (17 IU/kg VE) or a high VE (200 IU/kg VE; HiVE) diet for 14 d, then exposed to thermoneutral (TN; 20°C, 45% humidity) or HS (35°C, 35% to 45% humidity, 8 h daily) conditions for 7 d.
Heat stress (HS) exacerbates the body weight loss of lactating sows and reduces litter weight gain. Selenium (Se), vitamin E (VE), chromium (Cr) and betaine have been shown to ameliorate symptoms of HS, and yeast nucleotides and mannan oligosaccharides have been reported to improve lactational performance and immune response in pigs. Therefore, a combination of these nutrients may improve lactational performance of sows in summer.
View Article and Find Full Text PDF