Publications by authors named "Jeremy J Glynn"

This article describes the properties and performance of a rotary total artificial heart (TAH) that produces inherently pulsatile flow. The hydraulic performance of the TAH was characterized using a mock circulatory loop to simulate four physiologically relevant conditions: baseline flow, increased flow, systemic hypertension, and pulmonary hypertension. The pump has a variable shuttle rate (beats per minute), percentage dwell time, and angular velocity on either side (revolutions per minute), which allows for full control of the flow rate and pulsatility over a range of healthy and pathologic pressures and flow rates.

View Article and Find Full Text PDF

Chronic deep venous insufficiency is a debilitating disease with limited therapeutic interventions. A bioprosthetic venous valve could not only replace a diseased valve, but has the potential to fully integrate into the patient with a minimally invasive procedure. Previous work with valves constructed from small intestinal submucosa (SIS) showed improvements in patients' symptoms in clinical studies; however, substantial thickening of the implanted valve leaflets also occurred.

View Article and Find Full Text PDF

The decellularized matrix derived from porcine small intestinal submucosa (SIS) is a widely used biomaterial being investigated for numerous applications. Currently, thrombus deposition and neointimal hyperplasia have limited the use of SIS in some vascular applications. To limit these detrimental processes, this work applies bioactive, endothelial-inspired properties to the material.

View Article and Find Full Text PDF

There is significant clinical need for viable small-diameter vascular grafts. While there are many graft biomaterials in development, few have been clinically successful. Evaluation of grafts with a clinically relevant model is needed to drive development.

View Article and Find Full Text PDF

After many years of research, small diameter, synthetic vascular grafts still lack the necessary biologic integration to perform ideally in clinical settings. Endothelialization of vascular grafts has the potential to improve synthetic graft function, and endothelial outgrowth cells (EOCs) are a promising autologous cell source. Yet no work has established the link between endothelial cell functions and outcomes of implanted endothelialized grafts.

View Article and Find Full Text PDF

Decellularized tissues have been widely used as scaffolds for biomedical applications due to their presentation of adhesion peptide sequences and growth factors, which facilitate integration with surrounding tissue. One of the most commonly used decellularized tissues is derived from porcine small intestinal submucosa (SIS). In some applications, SIS is crosslinked to modulate the mechanical properties or degradation rate of the scaffold.

View Article and Find Full Text PDF

Endothelial cells (ECs) are central regulators of hemostasis, inflammation, and other vascular processes. ECs have been used to cover vascular graft materials in an attempt to improve the biological integration of the grafts with the surrounding tissue. Although EC seeded grafts demonstrated improved patency, the invasive nature of EC harvest has limited the clinical translation of this technique.

View Article and Find Full Text PDF

The dynamics of the cellular and molecular constituents of the circulatory system are regulated by the biophysical properties of the heart, vasculature and blood cells and proteins. In this review, we discuss measurement techniques that have been developed to characterize the physical and mechanical parameters of the circulatory system across length scales ranging from the tissue scale (centimeter) to the molecular scale (nanometer) and time scales of years to milliseconds. We compare the utility of measurement techniques as a function of spatial resolution and penetration depth from both a diagnostic and research perspective.

View Article and Find Full Text PDF

The clinical need for vascular grafts continues to grow. Tissue engineering strategies have been employed to develop vascular grafts for patients lacking sufficient autologous vessels for grafting. Restoring a functional endothelium on the graft lumen has been shown to greatly improve the long-term patency of small-diameter grafts.

View Article and Find Full Text PDF