The ability to restrict low molecular weight compounds to the gastrointestinal (GI) tract may enable an enhanced therapeutic index for molecular targets known to be associated with systemic toxicity. Using a triazolopyrazine CSF1R inhibitor scaffold, a broad range of prodrugs were synthesized and evaluated for enhanced delivery to the colon in mice. Subsequently, the preferred cyclodextrin prodrug moiety was appended to a number of CSF1R inhibitory active parent molecules, enabling GI-restricted delivery.
View Article and Find Full Text PDFPrevious work investigating tricyclic pyrrolopyrazines as kinase cores led to the discovery that 1-cyclohexyl-6H-pyrrolo[2,3-e][1,2,4]triazolo[4,3-a]pyrazine (12) had Jak inhibitory activity. Herein we describe our initial efforts to develop orally bioavailable analogs of 12 with improved selectivity of Jak1 over Jak2.
View Article and Find Full Text PDFWe previously demonstrated that selective inhibition of protein kinase Cθ (PKCθ) with triazinone 1 resulted in dose-dependent reduction of paw swelling in a mouse model of arthritis.1,2 However, a high concentration was required for efficacy, thus providing only a minimal safety window. Herein we describe a strategy to deliver safer compounds based on the hypothesis that optimization of potency in concert with good oral pharmacokinetic (PK) properties would enable in vivo efficacy at reduced exposures, resulting in an improved safety window.
View Article and Find Full Text PDFProtein kinase Cθ (PKCθ) regulates a key step in the activation of T cells. On the basis of its mechanism of action, inhibition of this kinase is hypothesized to serve as an effective therapy for autoimmune diseases such as rheumatoid arthritis (RA), inflammatory bowel disease (IBD), and psoriasis. Herein, the discovery of a small molecule PKCθ inhibitor is described, starting from a fragment hit 1 and advancing to compound 41 through the use of structure-based drug design.
View Article and Find Full Text PDFOptimization of the ADME properties of a series of 2,4-diaminopyrimidine-5-carboxamide inhibitors of Sky kinase resulted in the identification of highly selective compounds with properties suitable for use as in vitro and in vivo tools to probe the effects of Sky inhibition.
View Article and Find Full Text PDFWe report the SAR around a series of 2,4-diaminopyrimidine-5-carboxamide inhibitors of Sky kinase. 2-Aminophenethyl analogs demonstrate excellent potency but moderate kinase selectivity, while 2-aminobenzyl analogs that fill the Ala571 subpocket exhibit good inhibition activity and excellent kinase selectivity.
View Article and Find Full Text PDFMining of an in-house collection of angiotensin II type 1 receptor antagonists to identify compounds with activity at the peroxisome proliferator-activated receptor-γ (PPARγ) revealed a new series of imidazo[4,5-b]pyridines 2 possessing activity at these two receptors. Early availability of the crystal structure of the lead compound 2a bound to the ligand binding domain of human PPARγ confirmed the mode of interaction of this scaffold to the nuclear receptor and assisted in the optimization of PPARγ activity. Among the new compounds, (S)-3-(5-(2-(1H-tetrazol-5-yl)phenyl)-2,3-dihydro-1H-inden-1-yl)-2-ethyl-5-isobutyl-7-methyl-3H-imidazo[4,5-b]pyridine (2l) was identified as a potent angiotensin II type I receptor blocker (IC(50) = 1.
View Article and Find Full Text PDFAiming to improve upon previously disclosed Factor Xa inhibitors, a series of 4,4-disubstituted pyrrolidine-1,2-dicarboxamides were explored with the intent of increasing the projected human half-life versus 5 (projected human t(1/2)=6 h). A stereospecific route to compounds containing a 4-aryl-4-hydroxypyrrolidine scaffold was developed, resulting in several compounds that demonstrated an increase in the half-life as well as an increase in the in vitro potency compared to 5. Reported herein is the discovery of 26, containing a (2R,4S)-4-hydroxy-4-(2,4-difluorophenyl)-pyrrolidine scaffold, which is a selective, orally bioavailable, efficacious Factor Xa inhibitor that appears suitable for a once-daily dosing (projected human t(1/2)=23 h).
View Article and Find Full Text PDFChem Biol Drug Des
August 2007
Herein, we report the discovery of novel, proline-based factor Xa inhibitors containing a neutral P1 chlorophenyl pharmacophore. Through the additional incorporation of 1-(4-amino-3-fluoro-phenyl)-1H-pyridin-2-one 22, as a P4 pharmacophore, we discovered compound 7 (PD 0348292). This compound is a selective, orally bioavailable, efficacious FXa inhibitor that is currently in phase II clinical trials for the treatment and prevention of thrombotic disorders.
View Article and Find Full Text PDFA novel series of pyrrolidine-1,2-dicarboxamides was discovered as factor Xa inhibitors using structure-based drug design. This series consisted of a neutral 4-chlorophenylurea P1, a biphenylsulfonamide P4 and a D-proline scaffold (1, IC(50) = 18 nM). Optimization of the initial hit resulted in an orally bioavailable, subnanomolar inhibitor of factor Xa (13, IC(50) = 0.
View Article and Find Full Text PDFWe report the design and synthesis of a series of 6-(2,4-diaminopyrimidinyl)-1,4-benzoxazin-3-ones as orally bioavailable small molecule inhibitors of renin. Compounds with a 2-methyl-2-aryl substitution pattern exhibit potent renin inhibition and good permeability, solubility, and metabolic stability. Oral bioavailability was found to be dependent on metabolic clearance and cellular permeability, and was optimized through modulation of the sidechain that binds in the S3(sp) subsite.
View Article and Find Full Text PDFNovel 2,4-diaminopyrimidine-based small molecule renin inhibitors are disclosed. Through high throughput screening, parallel synthesis, X-ray crystallography, and structure based drug design, we have developed the first non-chiral, non-peptidic, small molecular template to possess moderate potency against renin. The designed compounds consist of a novel 6-ethyl-5-(1,2,3,4-tetrahydroquinolin-7-yl)pyrimidine-2,4-diamine ring system that exhibit moderate potency (IC(50): 91-650 nM) against renin while remaining 'Rule-of-five' compliant.
View Article and Find Full Text PDFHerein, we report on the identification of three potent glycine and related amino acid-based series of FXa inhibitors containing a neutral P1 chlorophenyl pharmacophore. A X-ray crystal structure has shown that constrained glycine derivatives with optimized N-substitution can greatly increase hydrophobic interactions in the FXa active site. Also, the substitution of a pyridone ring for a phenylsulfone ring in the P4 sidechain resulted in an inhibitor with enhanced oral bioavailability.
View Article and Find Full Text PDFA systematic investigation of the S3 sub-pocket activity requirements was conducted. It was observed that linear and sterically small side chain substituents are preferred in the S3 sub-pocket for optimal renin inhibition. Polar groups in the S3-sub-pocket were not well tolerated and caused a reduction in renin inhibitory activity.
View Article and Find Full Text PDFThe activated factor VII/tissue factor complex (FVIIa/TF) is known to play a key role in the formation of blood clots. Inhibition of this complex may lead to new antithrombotic drugs. A fluoropyridine-based series of FVIIa/TF inhibitors was discovered which utilized a diisopropylamino group for binding in the S2 and S3 binding pockets of the active site of the enzyme complex.
View Article and Find Full Text PDFInhibition of renin enzymatic activity by a series of ketopiperazine-based compounds containing a C6 benzyloxymethyl substituent correlated with a +(pi+sigma) effect. A 3-pyridinyloxymethyl substituent was also found to be equipotent as higher molecular weight analogs, and exhibited decreased CYP3A4 inhibition levels and improved pharmacokinetic properties.
View Article and Find Full Text PDFThe activated Factor VII/tissue factor complex (FVIIa/TF) plays a key role in the formation of blood clots. Inhibition of this complex may lead to new antithrombotic drugs. An X-ray crystal structure of a fluoropyridine-based FVIIa/TF inhibitor bound in the active site of the enzyme complex suggested that incorporation of substitution at the 5-position of the hydroxybenzoic acid side chain could lead to the formation of more potent inhibitors through interactions with the S1'/S2' pocket.
View Article and Find Full Text PDFWe have found that both enantiomeric configurations of the 6-alkoxymethyl-1-aryl-2-piperazinone scaffold display equipotent renin inhibition activity and similar SAR patterns. This enantiomeric flexibility is in contrast to a previously reported 3-alkoxymethyl-4-arylpiperidine scaffold.
View Article and Find Full Text PDFKetopiperazine 2 was designed from a previously published analog. Compound 2 was shown to be a novel, potent inhibitor of renin that, when administered orally, lowered blood pressure in a hypertensive double transgenic (human renin and angiotensinogen) mouse model. Compound 2 was further optimized to sub-nanomolar potency by designing an analog that addressed the S3 sub-pocket of the renin enzyme (16).
View Article and Find Full Text PDFRecently, trans-disubstituted oxo-aryl-piperidines have been identified as small molecule nonpeptide renin inhibitors for the modulation of hypertension. Herein, we report on the discovery and preparation of a new class of novel cis-disubstituted amino-aryl-piperidines as a mixture of enantiomers that are potent in vitro renin inhibitors and also, possess in vivo antihypertensive activity in a double transgenic mouse model.
View Article and Find Full Text PDF[reaction: see text] Chiral 1-aryl-6-(hydroxymethyl)-2-ketopiperazines can be prepared via an operationally simple, 6-exo epoxide ring-opening cyclization to form the ketopiperazine C6-N1 bond in high yields and with excellent enantiomeric purity.
View Article and Find Full Text PDFPD-198961, 3-(4-5-[(2R,6S)-2,6-dimethyltetrahydro-1(2H)-pyridinyl]pentyl-3-oxo-3,4-dihydro-2-quinoxalinyl)-4-hydroxybenzenecarboximidamide, is a novel, synthetic factor Xa inhibitor with a Ki of 2.7 nM against human factor Xa. The aim of the present study was to evaluate the pharmacokinetic profile and antithrombotic efficacy of PD-198961 in rabbits.
View Article and Find Full Text PDFFactor Xa (FXa) has materialized as a key enzyme for the intervention of the blood coagulation cascade and for the development of new antithrombotic agents. FXa is the lone enzyme responsible for the production of thrombin and therefore is an attractive target for the control of thrombus formation. We have designed and synthesized a unique series of quinoxalinone FXa inhibitors.
View Article and Find Full Text PDFThe potency and selectivity of a previous series of low molecular weight thrombin inhibitors were improved through modifications of the P1 and P3 residues. Introduction of diphenyl substituted sulfonamides in the P3 moiety led to highly efficacious compounds. By correctly selecting the combination of P1 and P3 residues, high levels of potency, selectivity and in vivo efficacy were obtained.
View Article and Find Full Text PDF