This study aims to support the prioritization of research and development (R&D) pathways of an anaerobic technology leveraging hydrogel-encapsulated biomass to treat high-strength organic industrial wastewaters, enabling decentralized energy recovery and treatment to reduce organic loading on centralized treatment facilities. To characterize the sustainability implications of early-stage design decisions and to delineate R&D targets, an encapsulated anaerobic process model was developed and coupled with design algorithms for integrated process simulation, techno-economic analysis, and life cycle assessment under uncertainty. Across the design space, a single-stage configuration with passive biogas collection was found to have the greatest potential for financial viability and the lowest life cycle carbon emission.
View Article and Find Full Text PDFCellulosic biomass-based sustainable aviation fuels (SAFs) can be produced from various feedstocks. The breakeven price and carbon intensity of these feedstock-to-SAF pathways are likely to differ across feedstocks and across spatial locations due to differences in feedstock attributes, productivity, opportunity costs of land for feedstock production, soil carbon effects, and feedstock composition. We integrate feedstock to fuel supply chain economics and life-cycle carbon accounting using the same system boundary to quantify and compare the spatially varying greenhouse gas (GHG) intensities and costs of GHG abatement with SAFs derived from four feedstocks (switchgrass, miscanthus, energy sorghum, and corn stover) at 4 km resolution across the U.
View Article and Find Full Text PDFMixed community microalgal wastewater treatment technologies have the potential to advance the limits of technology for biological nutrient recovery while producing a renewable carbon feedstock, but a deeper understanding of their performance is required for system optimization and control. In this study, we characterized the performance of a 568 m·day Clearas EcoRecover system for tertiary phosphorus removal (and recovery as biomass) at an operating water resource recovery facility (WRRF). The process consists of a (dark) mix tank, photobioreactors (PBRs), and a membrane tank with ultrafiltration membranes for the separation of hydraulic and solids residence times.
View Article and Find Full Text PDFThe widespread adoption of an agricultural circular economy requires the recovery of resources such as water, organic matter, and nutrients from livestock manure and sanitation. While this approach offers many benefits, we argue this is not without potential risks to human and environmental health that largely stem from the presence of contaminants in the recycled resources (e.g.
View Article and Find Full Text PDFResource recovery from wet organic wastes can support circular economies by creating financial incentives to produce renewable energy and return nutrients to agriculture. In this study, we characterize the potential for hydrothermal liquefaction (HTL)-based resource recovery systems to advance the economic and environmental sustainability of wastewater sludge, FOG (fats, oils, and grease), food waste, green waste, and animal manure management through the production of liquid biofuels (naphtha, diesel), fertilizers (struvite, ammonium sulfate), and power (heat, electricity). From the waste management perspective, median costs range from -193 $·tonne (FOG) to 251 $·tonne (green waste), and median carbon intensities range from 367 kg CO eq·tonne (wastewater sludge) to 769 kg CO eq·tonne (green waste).
View Article and Find Full Text PDFMicrobial production of succinic acid (SA) at an industrially relevant scale has been hindered by high downstream processing costs arising from neutral pH fermentation for over three decades. Here, we metabolically engineer the acid-tolerant yeast Issatchenkia orientalis for SA production, attaining the highest titers in sugar-based media at low pH (pH 3) in fed-batch fermentations, i.e.
View Article and Find Full Text PDFIn resource-limited settings, conventional sanitation systems often fail to meet their goals-with system failures stemming from a mismatch among community needs, constraints, and deployed technologies. Although decision-making tools exist to help assess the appropriateness of conventional sanitation systems in a specific context, there is a lack of a holistic decision-making framework to guide sanitation research, development, and deployment (RD&D) of technologies. In this study, we introduce DMsan-an open-source multi-criteria decision analysis Python package that enables users to transparently compare sanitation and resource recovery alternatives and characterize the opportunity space for early-stage technologies.
View Article and Find Full Text PDFCellulosic biofuels are part of a portfolio of solutions to address climate change; however, their production remains expensive and federal policy interventions (e.g., Renewable Fuel Standard) have not spurred broad construction of cellulosic biorefineries.
View Article and Find Full Text PDFPlants produce many high-value oleochemical molecules. While oil-crop agriculture is performed at industrial scales, suitable land is not available to meet global oleochemical demand. Worse, establishing new oil-crop farms often comes with the environmental cost of tropical deforestation.
View Article and Find Full Text PDFOmni Processors (OPs) are community-scale systems for non-sewered fecal sludge treatment. These systems have demonstrated their capacity to treat excreta from tens of thousands of people using thermal treatment processes (e.g.
View Article and Find Full Text PDFBiological models describing anaerobic digestion (AD) of sewage sludge have been widely applied to test various control and operation strategies. Anaerobic digestion model 1 (ADM1) provides a generic platform that includes the main processes of AD, excluding homoacetogenesis and the microbial structure. Homoacetogenic bacteria have been identified as important competitors for hydrogen consumption and acetate production.
View Article and Find Full Text PDFThe use of wastewater-grown microalgae has the potential to reduce the cost of algae-derived biofuels while simultaneously advancing nutrient recovery at water resource recovery facilities (WRRFs). However, a significant barrier has been the low yield and high protein content of phototrophic biomass. Here, we examine the use of solids residence time (SRT) as a selective pressure in driving biochemical composition, yield, biofuel production, and WRRF nutrient management cost.
View Article and Find Full Text PDFResource recovery from human excreta can advance circular economies while improving access to sanitation and renewable agricultural inputs. While national projections of nutrient recovery potential provide motivation for resource recovery sanitation, elucidating generalizable strategies for sustainable implementation requires a deeper understanding of country-specific overlap between supply and demand. For 107 countries, we analyze the colocation of human-derived nutrients (in urine) and crop demands for nitrogen, phosphorus, and potassium.
View Article and Find Full Text PDFDecision-makers in developing communities often lack credible data to inform decisions related to water, sanitation, and hygiene. Quantitative microbial risk assessment (QMRA), which quantifies pathogen-related health risks across exposure routes, can be informative; however, the utility of QMRA for decision-making is often undermined by data gaps. This work integrates QMRA, uncertainty and sensitivity analyses, and household surveys in Bwaise, Kampala (Uganda) to characterize the implications of censored data management, identify sources of uncertainty, and incorporate risk perceptions to improve the suitability of QMRA for informal settlements or similar settings.
View Article and Find Full Text PDFProviding safe and reliable sanitation services to the billions of people currently lacking them will require a multiplicity of approaches. Improving onsite wastewater treatment to standards enabling water reuse would reduce the need to transport waste and fresh water over long distances. Here, we describe a compact, automated system designed to treat the liquid fraction of blackwater for onsite water reuse that combines cross-flow ultrafiltration, activated carbon, and electrochemical oxidation.
View Article and Find Full Text PDFSanitation remains a global challenge, both in terms of access to toilet facilities and resource intensity (e.g., energy consumption) of waste treatment.
View Article and Find Full Text PDFUrban growth in low- and middle-income countries has intensified the need to expand sanitation infrastructure, especially in informal settlements. Sanitation approaches for these settings remain understudied, particularly regarding multidimensional social-ecological outcomes. Guided by a conceptual framework (developed in parallel with this study) re-envisioning sanitation as a human-derived resource system, here we characterize existing and alternative sanitation scenarios in an informal settlement in Kampala, Uganda.
View Article and Find Full Text PDFLife cycle assessment (LCA) has been widely applied in the wastewater industry, but inconsistencies in assumptions and methods have made it difficult for researchers and practitioners to synthesize results from across studies. This paper presents a critical review of published LCAs related to municipal wastewater management with a focus on developing systematic guidance for researchers and practitioners to conduct LCA studies to inform planning, design, and optimization of wastewater management and infrastructure (wastewater treatment plants, WWTPs; collection and reuse systems; related treatment technologies and policies), and to support the development of new technologies to advance treatment objectives and the sustainability of wastewater management. The paper guides the reader step by step through LCA methodology to make informed decisions on i) the definition of the goal and scope, ii) the selection of the functional unit and system boundaries, iii) the selection of variables to include and their sources to obtain inventories, iv) the selection of impact assessment methods, and v) the selection of an effective approach for data interpretation and communication to decision-makers.
View Article and Find Full Text PDFThe sixth Sustainable Development Goal seeks to achieve universal sanitation, but a lack of progress due to inhibiting factors (e.g., limitations in financial resources, sociocultural conditions, household decision-making) demands innovative approaches to meet this ambitious goal.
View Article and Find Full Text PDFSunlight-mediated inactivation of microorganisms is a low-cost approach to disinfect drinking water and wastewater. The reactions involved are affected by a wide range of factors, and a lack of knowledge about their relative importance makes it challenging to optimize treatment systems. To characterize the relative importance of environmental conditions, photoreactivity, water quality, and engineering design in the sunlight inactivation of viruses, we modeled the inactivation of three-human adenovirus and two bacteriophages-MS2 and phiX174-in surface waters and waste stabilization ponds by integrating solar irradiance and aquatic photochemistry models under uncertainty.
View Article and Find Full Text PDF