Introduction: Patients with myeloproliferative neoplasms (MPNs) and atrial fibrillation (AF) are at increased risk of thrombosis and bleeding. However, the risk of thrombosis and bleeding in patients with AF and MPN compared with the general population with AF is unclear. Additionally, traditional risk scores (CHADS-VASC and HAS-BLED) for risk/benefit estimation of thromboprophylaxis in AF do not account for MPN status.
View Article and Find Full Text PDFMetazoan transcription factors typically regulate large numbers of genes. Here we identify via a CRISPR-Cas9 genetic screen ZNF410, a pentadactyl DNA-binding protein that in human erythroid cells directly activates only a single gene, the NuRD component CHD4. Specificity is conveyed by two highly evolutionarily conserved clusters of ZNF410 binding sites near the CHD4 gene with no counterparts elsewhere in the genome.
View Article and Find Full Text PDFIncreasing fetal hemoglobin (HbF) provides clinical benefit in patients with sickle cell disease (SCD). We recently identified heme-regulated inhibitor (HRI, EIF2AK1), as a novel HbF regulator. Because HRI is an erythroid-specific protein kinase, it presents a potential target for pharmacologic intervention.
View Article and Find Full Text PDFReactivation of fetal hemoglobin (HbF) production benefits patients with sickle cell disease and β-thalassemia. To identify new HbF regulators that might be amenable to pharmacologic control, we screened a protein domain-focused CRISPR-Cas9 library targeting chromatin regulators, including BTB domain-containing proteins. Speckle-type POZ protein (SPOP), a substrate adaptor of the CUL3 ubiquitin ligase complex, emerged as a novel HbF repressor.
View Article and Find Full Text PDFIncreasing fetal hemoglobin (HbF) levels in adult red blood cells provides clinical benefit to patients with sickle cell disease and some forms of β-thalassemia. To identify potentially druggable HbF regulators in adult human erythroid cells, we employed a protein kinase domain-focused CRISPR-Cas9-based genetic screen with a newly optimized single-guide RNA scaffold. The screen uncovered the heme-regulated inhibitor HRI (also known as EIF2AK1), an erythroid-specific kinase that controls protein translation, as an HbF repressor.
View Article and Find Full Text PDFChromatin structure is tightly intertwined with transcription regulation. Here we compared the chromosomal architectures of fetal and adult human erythroblasts and found that, globally, chromatin structures and compartments A/B are highly similar at both developmental stages. At a finer scale, we detected distinct folding patterns at the developmentally controlled β-globin locus.
View Article and Find Full Text PDFCALHM1 (calcium homeostasis modulator 1) forms a plasma membrane ion channel that mediates neuronal excitability in response to changes in extracellular Ca(2+) concentration. Six human CALHM homologs exist with no homology to other proteins, although CALHM1 is conserved across >20 species. Here we demonstrate that CALHM1 shares functional and quaternary and secondary structural similarities with connexins and evolutionarily distinct innexins and their vertebrate pannexin homologs.
View Article and Find Full Text PDFThe diagnosis of idiopathic normal pressure hydrocephalus (iNPH) is still challenging. Alzheimer's disease (AD), along with vascular dementia, the most important differential diagnosis for iNPH, has several potential cerebrospinal fluid (CSF) biomarkers which might help in the selection of patients for shunt treatment. The aim of this study was to compare a battery of CSF biomarkers including well-known AD-related proteins with CSF from patients with suspected iNPH collected from the external lumbar drainage test (ELD).
View Article and Find Full Text PDF