Publications by authors named "Jeremy Goldman"

Biodegradable intravascular stents offer a promising alternative to permanent stents for treating atherosclerosis-related artery narrowing by potentially avoiding long-term complications. Identifying materials that degrade harmlessly and uniformly at a suitable rate is crucial. This study evaluated an advanced zinc alloy (Zn-Ag-Cu-Mn-Zr) alongside pure iron and pure zinc, using a simplified stent model of metallic wires implanted in the rat aorta.

View Article and Find Full Text PDF

Biodegradable metals based on zinc are being developed to serve as temporary arterial scaffolding. Although the inclusion of copper is becoming more prevalent for grain refinement in zinc alloys, the biological activity of the copper component has not been well investigated. Here, two ZnCu alloys (0.

View Article and Find Full Text PDF

In vitro testing for evaluating degradation mode and rate of candidate biodegradable metals to be used as intravascular stents is crucial before going to in vivo animal models. In this study, we show that X-ray microfocus computed tomography (microCT) presents a key added value to visualize degradation mode and to evaluate degradation rate and material surface properties in 3D and at high resolution of large regions of interest. The in vitro degradation behavior of three candidate biodegradable stent materials was evaluated: pure iron (Fe), pure zinc (Zn), and a quinary Zn alloy (ZnAgCuMnZr).

View Article and Find Full Text PDF

Aerobic exercise has been shown to have established benefits on motor function in Parkinson's disease (PD). However, the impact of exercise on depressive symptoms in PD remains unclear. This study aimed to investigate the effects of regular exercise, specifically using a forced running wheel, on both motor performance and the prevalence of depression in a unilateral 6-OHDA-lesioned rat model of PD.

View Article and Find Full Text PDF

Vascularization is a key pre-requisite to engineered anatomical scale three dimensional (3-D) constructs to ensure their nutrient and oxygen supply upon implantation. Presently, engineered pre-vascularized 3-D tissues are limited to only micro-scale hydrogels, which meet neither the anatomical scale needs nor the complexity of natural extracellular matrix (ECM) environments. Anatomical scale perfusable constructs are critically needed for translational applications.

View Article and Find Full Text PDF

Elastic laminae, an elastin-based, layered extracellular matrix structure in the media of arteries, can inhibit leukocyte adhesion and vascular smooth muscle cell proliferation and migration, exhibiting anti-inflammatory and anti-thrombogenic properties. These properties prevent inflammatory and thrombogenic activities in the arterial media, constituting a mechanism for the maintenance of the structural integrity of the arterial wall in vascular disorders. The biological basis for these properties is the elastin-induced activation of inhibitory signaling pathways, involving the inhibitory cell receptor signal regulatory protein α (SIRPα) and Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1).

View Article and Find Full Text PDF

A healthy lymphatic system is required to return excess interstitial fluid back to the venous circulation. However, up to 49% of breast cancer survivors eventually develop breast cancer-related lymphedema due to lymphatic injuries from lymph node dissections or biopsies performed to treat cancer. While early-stage lymphedema can be ameliorated by manual lymph drainage, no cure exists for late-stage lymphedema when lymph vessels become completely dysfunctional.

View Article and Find Full Text PDF

The development of an ideal vascular prosthesis represents an important challenge in terms of the treatment of cardiovascular diseases with respect to which new materials are being considered that have produced promising results following testing in animal models. This study focuses on nanofibrous polycaprolactone-based grafts assessed by means of histological techniques 10 days and 6 months following suturing as a replacement for the rat aorta. A novel stereological approach for the assessment of cellular distribution within the graft thickness was developed.

View Article and Find Full Text PDF
Article Synopsis
  • * This study evaluates the efficacy of hMSC-secreted extracellular matrix (ECM) in promoting lymphangiogenesis through both in vitro coculture with lymphatic endothelial cells (LECs) and an in vivo lymphedema mouse model.
  • * Results show that hMSC-derived ECM enhances lymphatic capillary formation by 1.2-3.6 times compared to controls, supporting tissues through matrix remodeling and promoting wound healing in lymphedema.
View Article and Find Full Text PDF

The metallurgical engineering of bioresorbable zinc (Zn)-based medical alloys would greatly benefit from clarification of the relationships between material properties and biological responses. Here we investigate the biocompatibility of three Zn-based silver (Ag)-containing alloys, ranging from binary to quinary alloy systems. Selected binary and quinary Zn-Ag-based alloys underwent solution treatment (ST) to increase the solubility of Ag-rich phases within the Zn bulk matrix, yielding two different microstructures (one without ST and a different one with ST) with the same elemental composition.

View Article and Find Full Text PDF

Biodegradable stents have tremendous theoretical potential as an alternative to bare metal stents and drug-eluting stents for the treatment of obstructive coronary artery disease. Any bioresorbable or biodegradable scaffold material needs to possess optimal mechanical properties and uniform degradation behavior that avoids local and systemic toxicity. Recently, molybdenum (Mo) has been investigated as a potential novel biodegradable material for this purpose.

View Article and Find Full Text PDF

We have developed a novel bioactive hybrid metallic implant that integrates the beneficial characteristics of a permanent matrix and a biodegradable substance. Such a combination may generate a material system that evolves into a porous structure within weeks to months following implantation and can be used to form strong interfacial bonding and osseointegration for orthopedic and dental applications. Presently, traditional technologies such as casting, powder metallurgy and plastic forming have limited ability to produce the complex bioactive implant structures that are required in practical applications.

View Article and Find Full Text PDF

Zinc is an essential trace element having various structural, catalytic and regulatory interactions with an estimated 3000 proteins. Zinc has drawn recent attention for its use, both as pure metal and alloyed, in arterial stents due to its biodegradability, biocompatibility, and low corrosion rates. Previous studies have demonstrated that zinc metal implants prevent the development of neointimal hyperplasia, which is a common cause of restenosis following coronary intervention.

View Article and Find Full Text PDF

Zinc (Zn) has emerged as a promising bioresorbable stent material due to its satisfactory corrosion behavior and excellent biocompatibility. However, for load bearing implant applications, alloying is required to boost its mechanical properties as pure Zn exhibits poor strength. Unfortunately, an increase in inflammation relative to pure Zn is a commonly observed side-effect of Zn alloys.

View Article and Find Full Text PDF
Article Synopsis
  • - Secondary lymphedema is a chronic condition causing tissue swelling and inflammation, disrupting fluid and immune cell movement, and needs effective treatments.
  • - Strategies to treat lymphedema include injecting growth factors, delivering genes to stimulate lymphatic growth, and using bioengineered materials to deliver these treatments directly to affected areas.
  • - The development of larger lymphatic structures, such as vessels and nodes, using bioengineered scaffolds aims to restore lymphatic function and avoid damage to donor sites, while this review also addresses the molecular mechanisms involved and the challenges in implementing these advanced therapies.
View Article and Find Full Text PDF

Biodegradable arterial implants based on zinc have been found to suppress neointimal hyperplasia, suggesting that biodegradable materials containing zinc may be used to construct vascular implants with a reduced rate of restenosis. However, the molecular mechanism has remained unclear. In this report, we show that zinc-containing materials can be used to prevent neointimal formation when implanted into the rat aorta.

View Article and Find Full Text PDF

Cardiac catheters are a vital tool in medicine due to their widespread use in many minimally invasive procedures. To aid in advancing the catheter within the patient's vasculature, many catheters are coated with a lubricious hydrophilic coating (HPC). Although HPCs benefit patients, their delamination during use is a serious safety concern.

View Article and Find Full Text PDF

Zn-based alloys are recognized as promising bioabsorbable materials for cardiovascular stents, due to their biocompatibility and favorable degradability as compared to Mg. However, both low strength and intrinsic mechanical instability arising from a strong strain rate sensitivity and strain softening behavior make development of Zn alloys challenging for stent applications. In this study, we developed binary Zn-4.

View Article and Find Full Text PDF

Zinc (Zn)-based biodegradable metals have been widely investigated for cardiovascular stent and orthopedic applications. However, the effect of Zn surface features on adverse biological responses has not been well established. Here, we hypothesized that a metallic zinc implant's surface oxide film character may critically influence early neointimal growth and development.

View Article and Find Full Text PDF

Zinc alloy development and characterization for vascular stent application has been facilitated by many standardized and inexpensive methods. In contrast, overly simplistic in vitro approaches dominate the preliminary biological testing of materials. In 2012, our group introduced a metal wire implantation model in rats as a cost effective and realistic approach for the biocompatibility evaluation of degradable materials in the vascular environment.

View Article and Find Full Text PDF

Tissue engineered vascular grafts (TEVGs) are beginning to achieve clinical success and hold promise as a source of grafting material when donor grafts are unsuitable or unavailable. Significant technological advances have generated small-diameter TEVGs that are mechanically stable and promote functional remodeling by regenerating host cells. However, developing a biocompatible blood-contacting surface remains a major challenge.

View Article and Find Full Text PDF
Article Synopsis
  • * Biodegradable metallic stents could help, but existing materials like iron and magnesium either degrade too slowly or too quickly.
  • * This study explores using galfenol, a magnetic alloy, to control stent degradation rates post-surgery, revealing potential for combining it with other materials, despite its current unsuitable degradation rate for stenting.
View Article and Find Full Text PDF

It is still an open challenge to find a biodegradable metallic material exhibiting sufficient mechanical properties and degradation behavior to serve as an arterial stent. In this study, Zn-Mg alloys of 0.002 (Zn-002Mg), 0.

View Article and Find Full Text PDF

Increasing interest in biodegradable metals (Mg, Fe, and Zn) as structural materials for orthopedic and cardiovascular applications mainly relates to their promising biocompatibility, mechanical properties and ability to self-remove. However, Mg alloys suffer from excessive corrosion rates associated with premature loss of mechanical integrity and gas embolism risks. Fe based alloys produce voluminous corrosion products that have a detrimental effect on neighboring cells and extracellular matrix.

View Article and Find Full Text PDF

Unlabelled: Metallic zinc implanted into the abdominal aorta of rats out to 6months has been demonstrated to degrade while avoiding responses commonly associated with the restenosis of vascular implants. However, major questions remain regarding whether a zinc implant would ultimately passivate through the production of stable corrosion products or via a cell mediated fibrous encapsulation process that prevents the diffusion of critical reactants and products at the metal surface. Here, we have conducted clinically relevant long term in vivo studies in order to characterize late stage zinc implant biocorrosion behavior and products to address these critical questions.

View Article and Find Full Text PDF