Publications by authors named "Jeremy Garwood"

We have investigated the effects of tCFA15, a non-peptidic compound, on the differentiation of neural stem cell-derived neurospheres, and have found that tCFA15 promotes their differentiation into neurons and reduces their differentiation into astrocytes, in a dose-dependent manner. This response is reminiscent of that resulting from the loss-of-function of Notch signaling after inactivation of the Delta-like 1 (Dll1) gene. Further analysis of the expression of genes from the Notch pathway by reverse transcriptase-PCR revealed that tCFA15 treatment results in a consistent decrease in the level of Notch1 mRNA.

View Article and Find Full Text PDF

Tenascin-C (Tnc) is a multimodular extracellular matrix glycoprotein that is markedly upregulated in CNS injuries where it is primarily secreted by reactive astrocytes. Different Tnc isoforms can be generated by the insertion of variable combinations of one to seven (in rats) alternatively spliced distinct fibronectin type III (FnIII) domains to the smallest variant. Each spliced FnIII repeat mediates specific actions on neurite outgrowth, neuron migration or adhesion.

View Article and Find Full Text PDF

Prominin-1 (CD133) is a cholesterol-interacting pentaspan membrane glycoprotein specifically associated with plasma membrane protrusions. Prominin-1 is expressed by various stem and progenitor cells, notably neuroepithelial progenitors found in the developing embryonic brain. Here, we further investigated its expression in the murine brain.

View Article and Find Full Text PDF

The chondroitin sulfate proteoglycan DSD-1-PG/phosphacan represents one of four splice variants of receptor-protein-tyrosine-phosphatase-beta/zeta (RPTPbeta/zeta). This receptor is expressed by glial cells and occurs in two isoforms, RPTPbeta(long) and RPTPbeta(short). The secreted forms phosphacan and phosphacan short isoform (PSI) bind to extracellular matrix and adhesion molecules and might mediate astroglial effects on neuronal differentiation.

View Article and Find Full Text PDF

A unique and unresolved property of the central nervous system is that its extracellular matrix lacks fibrillar elements. In the present report, we show that astrocytes secrete triple helices of fibrillar collagens type I, III and V in culture, while no astroglial collagen expression could be detected in vivo. We discovered two inhibitory mechanisms that could underlie this apparent discrepancy.

View Article and Find Full Text PDF

Interactions between neurons and glial cells play important roles in regulating key events of development and regeneration of the CNS. Thus, migrating neurons are partly guided by radial glia to their target, and glial scaffolds direct the growth and directional choice of advancing axons, e.g.

View Article and Find Full Text PDF

Phosphacan is a chondroitin sulfate proteoglycan representing the secreted extracellular part of a transmembrane receptor protein tyrosine phosphatase (RPTP-beta). These isoforms have been implicated in cell-extracellular matrix signaling events associated with myelination, axon growth, and cell migration in the developing central nervous system and may play critical roles in the context of brain pathologies. Recently, we have reported the identification of a new isoform of phosphacan, the phosphacan short isoform (PSI), the expression of which peaks in the second postnatal week.

View Article and Find Full Text PDF

Analysis of Tenascin-C (TN-C) knockout mice revealed novel roles for this extracellular matrix (ECM) protein in regulation of the developmental programme of oligodendrocyte precursor cells (OPCs), their maturation into myelinating oligodendrocytes and sensitivity to growth factors. A major component of the ECM of developing nervous tissue, TN-C was expressed in zones of proliferation, migration and morphogenesis. Examination of TN-C knockout mice showed roles for TN-C in control of OPC proliferation and migration towards zones of myelination [E.

View Article and Find Full Text PDF

Several chondroitin sulfate proteoglycans (CSPGs) are upregulated after CNS injury and are thought to limit axonal regeneration in the adult mammalian CNS. Therefore, we examined the expression of the CSPG, receptor protein tyrosine phosphatase beta (RPTPbeta)/phosphacan, after a knife lesion to the cerebral cortex and after treatment of glial cultures with regulatory factors. The three splice variants of this CSPG gene, the secreted isoform, phosphacan, and the two transmembrane isoforms, the long and short RPTPbeta, were examined.

View Article and Find Full Text PDF

Molecular studies have demonstrated that the murine AN2 antigen is the mouse homologue of the rat NG2 and human MCSP protein. The molecule is a single-pass transmembrane protein which carries a variable number of glyco- and glycosaminoglycan chains according to cell type and developmental stage. AN2/NG2 has two extracellular Laminin G-like domains which are classically involved in cell adhesion and recognition.

View Article and Find Full Text PDF

Phosphacan, one of the principal proteoglycans in the extracellular matrix of the central nervous system, is implicated in neuron-glia interactions associated with neuronal differentiation and myelination. We report here the identification of a novel truncated form of phosphacan, phosphacan short isoform (PSI), that corresponds to the N-terminal carbonic anhydrase- and fibronectin type III-like domains and half of the spacer region. The novel cDNA transcript was isolated by screening of a neonatal brain cDNA expression library using a polyclonal antibody raised against phosphacan.

View Article and Find Full Text PDF

The use of monoclonal antibodies has led to much progress in the characterization of extracellular matrix components of the CNS. F1C3 is a monoclonal antibody raised against the astrocytic cell line, Neu7. Analysis by immunoprecipitation and Western blots of the F1C3 antigen in Neu7 cell lysates and conditioned medium reveals a recognition of several protein bands around 140-230 kD.

View Article and Find Full Text PDF

Tenascin-C is a multimodular glycoprotein that possesses neurite outgrowth-stimulating properties, and one functional site has been localized to the alternatively spliced fibronectin type III domain D. To identify the neuronal receptor that mediates this effect, neighboring pairs of fibronectin type III domains were expressed as hybrid proteins fused to the Fc fragment of human immunoglobulin. These IgFc fusions were tested for neurite outgrowth-promoting properties on embryonic day 18 rat hippocampal neurons, and both the combinations BD and D6 were shown to promote the elongation of the longest process, the prospective axon.

View Article and Find Full Text PDF