Publications by authors named "Jeremy G Turner"

Introduction: One of the primary tenets in pharmacotherapy is that the applied drug must reach the target tissue at therapeutic concentration. For many therapies intended to treat hearing disorders it has become apparent that we have failed to achieve this goal, contributing to poor outcomes in several important clinical trials. The crux of the delivery problem is that small lipophilic molecules pass with relative ease through membranous boundaries of the body.

View Article and Find Full Text PDF

Animal research facilities are noisy environments. The high air change rates required in animal housing spaces tend to create higher noise levels from the heating and cooling systems. Housing rooms are typically constructed of hard wall material that is easily cleaned but simultaneously highly reverberant, meaning that the sound cannot be controlled/attenuated so the sounds that are generated bounce around the room uncontrolled.

View Article and Find Full Text PDF

Noise and vibration are present in every room of laboratory animal vivaria, with great variability from room-to-room and facility-to-facility. Such stimuli are rarely measured. As a result, the many stakeholders involved in biomedical research, (for example, funding agencies, construction personnel, equipment manufacturers, animal facility administrators, veterinarians, technicians, and scientists) have little awareness of the effects such stimuli may have on their research animals.

View Article and Find Full Text PDF

Fischer Brown Norway (FBN) rats (n = 233) were unilaterally exposed to 12 different combinations of noise intensity, duration, and spectrum, while 46 rats served as sham-exposed controls. Rats were behaviorally tested for tinnitus and hyperacusis using gap-induced inhibition of the acoustic startle reflex (Gap) and prepulse inhibition (PPI) using 60-dB SPL before noise-exposure and at regular intervals for 12 mo. 12-mo after noise exposure the middle-aged rats were then tested again for tinnitus and hyperacusis before collecting Auditory Brainstem Response (ABR) thresholds.

View Article and Find Full Text PDF

Accumulating evidence suggests a role for inhibitory neurotransmitter dysfunction in the pathology of tinnitus. Opposing hypotheses proposed either a pathologic decrease or increase of GABAergic inhibition in medial geniculate body (MGB). In thalamus, GABA mediates fast synaptic inhibition via synaptic GABAA receptors (GABAARs) and persistent tonic inhibition via high-affinity extrasynaptic GABAARs.

View Article and Find Full Text PDF

In addition to their extended lifespans, slow-aging growth hormone receptor/binding protein gene-disrupted (knockout) (GHR-KO) mice are hypoinsulinemic and highly sensitive to the action of insulin. It has been proposed that this insulin sensitivity is important for their longevity and increased healthspan. We tested whether this insulin sensitivity of the GHR-KO mouse is necessary for its retarded aging by abrogating that sensitivity with a transgenic alteration that improves development and secretory function of pancreatic β-cells by expressing Igf-1 under the rat insulin promoter 1 (RIP::IGF-1).

View Article and Find Full Text PDF

Tinnitus is an auditory percept without an environmental acoustic correlate. Contemporary tinnitus models hypothesize tinnitus to be a consequence of maladaptive plasticity-induced disturbance of excitation-inhibition homeostasis, possibly convergent on medial geniculate body (MGB, auditory thalamus) and related neuronal networks. The MGB is an obligate acoustic relay in a unique position to gate auditory signals to higher-order auditory and limbic centres.

View Article and Find Full Text PDF

Objectives: Presbyacusis, one of the most common ailments of the elderly, is often treated with hearing aids, which serve to reintroduce some or all of those sounds lost to peripheral hearing loss. However, little is known about the underlying changes to the ear and brain as a result of such experience with sound late in life. The present study attempts to model this process by rearing aged CBA mice in an augmented acoustic environment (AAE).

View Article and Find Full Text PDF

Tinnitus has been associated with increased spontaneous and evoked activity, increased neural synchrony, and reorganization of tonotopic maps of auditory nuclei. However, the neurotransmitter systems mediating these changes are poorly understood. Here, we developed an in vitro assay that allows us to evaluate the roles of excitation and inhibition in determining the neural correlates of tinnitus.

View Article and Find Full Text PDF

Presbycusis can be considered a slow age-related peripheral and central deterioration of auditory function which manifests itself as deficits in speech comprehension, especially in noisy environments. The present study examined neural correlates of a simple broadband noise stimulus in primary auditory cortex (A1) of young and aged Fischer-Brown Norway (FBN) rats. Age-related changes in unit responses to broadband noise bursts and spontaneous activity were simultaneously recorded across A1 layers using a single shank, 16-channel electrode.

View Article and Find Full Text PDF

Cisplatin, a chemotherapeutic agent of choice for the treatment of solid tumors, produces hearing loss in approximately half a million new cancer patients annually in the United States. The hearing loss is due, in part, to increased generation of reactive oxygen species (ROS) in the cochlea, leading to lipid peroxidation and damage or death of outer hair cells in the organ of Corti. The cochlea expresses the transient receptor potential vanilloid 1 (TRPV1), which are normally expressed on small diameter neurons in the peripheral nervous system and mediate thermal sensitivity, but whose role in the cochlea is unclear.

View Article and Find Full Text PDF

Purpose: A variety of options for behavioral assessment of tinnitus in laboratory animals are available to researchers today. These options are briefly reviewed, followed by data suggesting that gap detection procedures might be used to efficiently measure acute, salicylate-induced tinnitus and possibly hyperacusis in rats.

Method: Fischer Brown Norway rats (n = 10) were given intraperitoneal injections of 350 mg/kg sodium salicylate on 2 consecutive days, and the effects on gap detection were observed across 9 different frequency bands.

View Article and Find Full Text PDF

Aging and acoustic trauma may result in partial peripheral deafferentation in the central auditory pathway of the mammalian brain. In accord with homeostatic plasticity, loss of sensory input results in a change in pre- and postsynaptic GABAergic and glycinergic inhibitory neurotransmission. As seen in development, age-related changes may be activity dependent.

View Article and Find Full Text PDF

A longstanding hypothesis is that tinnitus, the perception of sound without an external acoustic source, is triggered by a distinctive pattern of cochlear hair cell (HC) damage and that this subsequently leads to altered neural activity in the central auditory pathway. This hypothesis was tested by assessing behavioral evidence of tinnitus and spontaneous neural activity in the inferior colliculus (IC) after unilateral cochlear trauma. Chinchillas were assigned to four cochlear treatment groups.

View Article and Find Full Text PDF

The fact that so little is currently known about the pathophysiology of tinnitus is no doubt partly due to the relatively slow development of an animal model. Not until the work of Jastreboff et al. (1988a, b) did tinnitus researchers have at their disposal a method of determining whether their animals experienced tinnitus.

View Article and Find Full Text PDF

Environmental noise can alter endocrine, reproductive and cardiovascular function, disturb sleep/wake cycles, and can mask normal communication between animals. These outcomes indicate that noise in the animal facility might have wide-ranging affects on animals, making what laboratory animals hear of consequence for all those who use animals in research, not just the hearing researcher. Given the wide-ranging effects of noise on laboratory animals, routine monitoring of noise in animal facilities would provide important information on the nature and stability of the animal environment.

View Article and Find Full Text PDF

The fusiform cell and deep layers of the dorsal cochlear nucleus (DCN) show neurotransmitter and functional age-related changes suggestive of a downregulation of inhibitory efficacy onto DCN output neurons. Inhibitory circuits implicated in these changes include vertical and D-multipolar cells. Cartwheel cells comprise a large additional population of DCN inhibitory neurons.

View Article and Find Full Text PDF

The study describes a novel method for tinnitus screening in rats by use of gap detection reflex procedures. The authors hypothesized that if a background acoustic signal was qualitatively similar to the rat's tinnitus, poorer detection of a silent gap in the background would be expected. Rats with prior evidence of tinnitus at 10 kHz (n = 14) exhibited significantly worse gap detection than controls (n = 13) when the gap was embedded in a background similar to their tinnitus.

View Article and Find Full Text PDF

Advanced age is commonly associated with progressive cochlear pathology and central auditory deficits, collectively known as presbycusis. The present study examined central correlates of presbycusis by measuring response properties of primary auditory cortex (AI) layer V neurons in the Fischer Brown Norway rat model. Layer V neurons represent the major output of AI to other cortical and subcortical regions (primarily the inferior colliculus).

View Article and Find Full Text PDF

Layer-V pyramidal cells comprise a major output of primary auditory cortex (A1). At least two cell types displaying different morphology, projections and in vitro physiology have been previously identified in layer-V. The focus of the present study was to characterize extracellular receptive field properties of layer-V neurons to determine whether a similar breakdown of responses can be found in vivo.

View Article and Find Full Text PDF

Hearing in laboratory animals is a topic that traditionally has been the domain of the auditory researcher. However, hearing loss and exposure to various environmental sounds can lead to changes in multiple organ systems, making what laboratory animals hear of consequence for researchers beyond those solely interested in hearing. For example, several inbred mouse strains commonly used in biomedical research (e.

View Article and Find Full Text PDF