Alveolar macrophages (AM) are resident macrophages of the lung and play important roles in the maintenance of tissue homeostasis as well as host defense. Here, we describe how they can be harvested from murine lungs, expanded in vitro, and transduced with lentiviral vectors.
View Article and Find Full Text PDFAlveolar macrophages (AMs) are lung tissue-resident macrophages that can be expanded in culture, but it is unknown to what extent culture affects their in vivo identity. Here we show that mouse long-term ex vivo expanded AMs (exAMs) maintained a core AM gene expression program, but showed culture adaptations related to adhesion, metabolism and proliferation. Upon transplantation into the lung, exAMs reacquired full transcriptional and epigenetic AM identity, even after several months in culture and could self-maintain long-term in the alveolar niche.
View Article and Find Full Text PDFAlveolar macrophages (AM) are tissue-resident macrophages that colonize the lung around birth and can self-maintain long-term in an adult organism without contribution of monocytes. AM are located in the pulmonary alveoli and can be harvested by washing the lungs using the method of bronchoalveolar lavage (BAL). Here, we compared different conditions of BAL to obtain high yields of murine AM for culture and expansion of AM.
View Article and Find Full Text PDFMature differentiated macrophages can self-maintain by local proliferation in tissues and can be extensively expanded in culture under specific conditions, but the mechanisms of this phenomenon remain only partially defined. Here, we show that SIRT1, an evolutionary conserved regulator of life span, positively affects macrophage self-renewal ability and Overexpression of SIRT1 during bone marrow-derived macrophage differentiation increased their proliferative capacity. Conversely, decrease of SIRT1 expression by shRNA inactivation, CRISPR/Cas9 mediated deletion and pharmacological inhibition restricted macrophage self-renewal in culture.
View Article and Find Full Text PDFApplying clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9)-mediated mutagenesis to primary mouse immune cells, we used high-fidelity single guide RNAs (sgRNAs) designed with an sgRNA design tool (CrispRGold) to target genes in primary B cells, T cells, and macrophages isolated from a Cas9 transgenic mouse line. Using this system, we achieved an average knockout efficiency of 80% in B cells. On this basis, we established a robust small-scale CRISPR-mediated screen in these cells and identified genes essential for B-cell activation and plasma cell differentiation.
View Article and Find Full Text PDFDifferentiated macrophages can self-renew in tissues and expand long term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network that controls self-renewal. Single-cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors.
View Article and Find Full Text PDFCardiac macrophages (cMΦ) are critical for early postnatal heart regeneration and fibrotic repair in the adult heart, but their origins and cellular dynamics during postnatal development have not been well characterized. Tissue macrophages can be derived from embryonic progenitors or from monocytes during inflammation. We report that within the first weeks after birth, the embryo-derived population of resident CX3CR1(+) cMΦ diversifies into MHCII(+) and MHCII(-) cells.
View Article and Find Full Text PDF