Clinical trial data are typically collected through multiple systems developed by different vendors using different technologies and data standards. That data need to be integrated, standardized and transformed for a variety of monitoring and reporting purposes. The need to process large volumes of often inconsistent data in the presence of ever-changing requirements poses a significant technical challenge.
View Article and Find Full Text PDFThe heat-shock response is a key factor in diverse stress scenarios, ranging from hyperthermia to protein folding diseases. However, the complex dynamics of this physiological response have eluded mathematical modeling efforts. Although several computational models have attempted to characterize the heat-shock response, they were unable to model its dynamics across diverse experimental datasets.
View Article and Find Full Text PDFAnalysis of heart rate variability (HRV) is a promising diagnostic technique due to the noninvasive nature of the measurements involved and established correlations with disease severity, particularly in inflammation-linked disorders. However, the complexities underlying the interpretation of HRV complicate understanding the mechanisms that cause variability. Despite this, such interpretations are often found in literature.
View Article and Find Full Text PDFThe human body can be viewed as a dynamical system, with physiological states such as health and disease broadly representing steady states. From this perspective, and given inter- and intra-individual heterogeneity, an important task is identifying the propensity to transition from one steady state to another, which in practice can occur abruptly. Detecting impending transitions between steady states is of significant importance in many fields, and thus a variety of methods have been developed for this purpose, but lack of data has limited applications in physiology.
View Article and Find Full Text PDFDysregulation of the inflammatory response is a critical component of many clinically challenging disorders such as sepsis. Inflammation is a biological process designed to lead to healing and recovery, ultimately restoring homeostasis; however, the failure to fully achieve those beneficial results can leave a patient in a dangerous persistent inflammatory state. One of the primary challenges in developing novel therapies in this area is that inflammation is comprised of a complex network of interacting pathways.
View Article and Find Full Text PDFThe control and management of inflammation is a key aspect of clinical care for critical illnesses such as sepsis. In an ideal reaction to injury, the inflammatory response provokes a strong enough response to heal the injury and then restores homeostasis. When inflammation becomes dysregulated, a persistent inflammatory state can lead to significant deleterious effects and clinical challenges.
View Article and Find Full Text PDFAcute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals.
View Article and Find Full Text PDFCircadian rhythmicity in mammals is primarily driven by the suprachiasmatic nucleus (SCN), often called the central pacemaker, which converts the photic information of light and dark cycles into neuronal and hormonal signals in the periphery of the body. Cells of peripheral tissues respond to these centrally mediated cues by adjusting their molecular function to optimize organism performance. Numerous systemic cues orchestrate peripheral rhythmicity, such as feeding, body temperature, the autonomic nervous system, and hormones.
View Article and Find Full Text PDFEndogenous glucocorticoids are secreted by the hypothalamic-pituitary-adrenal (HPA) axis in response to a wide range of stressors. Glucocorticoids exert significant downstream effects, including the regulation of many inflammatory genes. The HPA axis functions such that glucocorticoids are released in a pulsatile manner, producing ultradian rhythms in plasma glucocorticoid levels.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
December 2011
Glucocorticoids are steroid hormones which, among other functions, exert an antiinflammatory effect. Endogenous glucocorticoids are normally secreted by the adrenal gland in discrete bursts. It is becoming increasingly evident that this pulsatile secretion pattern, leading to ultradian rhythms of plasma glucocorticoid levels, may have important downstream regulatory effects on glucocorticoid-responsive genes.
View Article and Find Full Text PDFHeart rate variability (HRV), the quantification of beat-to-beat variability, has been studied as a potential prognostic marker in inflammatory diseases such as sepsis. HRV normally reflects significant levels of variability in homeostasis, which can be lost under stress. Much effort has been placed in interpreting HRV from the perspective of quantitatively understanding how stressors alter HRV dynamics, but the molecular and cellular mechanisms that give rise to both homeostatic HRV and changes in HRV have received less focus.
View Article and Find Full Text PDFPurpose: The area under the curve (AUC) is commonly used to assess the extent of exposure of a drug. The same concept can be applied to generally assess pharmacodynamic responses and the deviation of a signal from its baseline value. When the initial condition for the response of interest is not zero, there is uncertainty in the true value of the baseline measurement.
View Article and Find Full Text PDFMicroarray experiments generate massive amounts of data, necessitating innovative algorithms to distinguish biologically relevant information from noise. Because the variability of gene expression data is an important factor in determining which genes are differentially expressed, analysis techniques that take into account repeated measurements are critically important. Additionally, the selection of informative genes is typically done by searching for the individual genes that vary the most across conditions.
View Article and Find Full Text PDFA wide variety of modeling techniques have been applied towards understanding inflammation. These models have broad potential applications, from optimizing clinical trials to improving clinical care. Models have been developed to study specific systems and diseases, but the effect of circadian rhythms on the inflammatory response has not been modeled.
View Article and Find Full Text PDF