Angiogenesis plays a critical role in tumor progression in various cancers, including neuroblastoma. We have previously shown that gastrin-releasing peptide (GRP) stimulates neuroblastoma growth and that its cell surface receptors, gastrin-releasing peptide receptors (GRP-R), are overexpressed in advanced-stage human neuroblastomas; however, the effects of GRP on angiogenesis are not clearly elucidated. Interleukin (IL) 8, a proinflammatory chemokine, plays an important role during tumor angiogenesis.
View Article and Find Full Text PDFObjectives: To evaluate whether aggressive, undifferentiated neuroblastomas express tumor suppressor protein PTEN (phosphatase and tensin homolog deleted on chromosome ten) and to examine the effects of gastrin-releasing peptide (GRP) on PTEN gene and protein expression.
Summary Background Data: We have previously shown that neuroblastomas secrete GRP, which binds to its cell surface receptor (GRP-R) to stimulate cell growth in an autocrine fashion. However, the effects of GRP on expression of the tumor suppressor gene PTEN have not been elucidated in neuroblastomas.
Background: We have demonstrated that gastrin-releasing peptide (GRP) binds specifically to its cell surface receptor, GRP-R, to act as an autocrine/paracrine growth factor for neuroblastomas (NBs); an increased expression of GRP-R was found in more advanced-stage NBs. Ets family proteins are nuclear targets for intracellular kinase pathways that can lead to cell proliferation; however, a potential role of Ets in the expression of GRP-R in NBs is unknown. Therefore, the purpose of our study was to determine whether Ets regulates transcriptional activity of GRP-R in NBs.
View Article and Find Full Text PDF