We aimed to develop new equations that predict exercise-induced energy expenditure (EE) more accurately than previous ones during running by including new parameters as fitness level, body composition and/or running intensity in addition to heart rate (HR). Original equations predicting EE were created from data obtained during three running intensities (25%, 50% and 70% of HR reserve) performed by 50 subjects. Five equations were conserved according to their accuracy assessed from error rates, interchangeability and correlations analyses: one containing only basic parameters, two containing VO2max or speed at VO2max and two including running speed with or without HR.
View Article and Find Full Text PDFPurpose: Both training and chronic hypoxia act on the autonomic nervous system. Because trained Andean high-altitude natives could perform a high-altitude marathon (4220 m above sea level) in 02:27:23 h, we hypothesized that living in chronic hypoxia does not limit the training-induced benefits on the autonomic modulation of the heart.
Methods: Trained (N=13) and sedentary (N=11) Andean high-altitude natives performed an active orthostatic test.
The autonomic and cardiovascular adaptations to hypoxia are opposite to those resulting from aerobic training. We investigated (1) whether exposure to hypoxia in a live high-train low (LHTL) session limits the autonomic and cardiovascular adaptations to training, and (2) whether such interactions remain 15 days after the end of the LHTL. Eighteen national swimmers trained for 13 days at 1,200 m, living (16 h day(-1)) either at 1,200 m (live low-train low, LLTL) or at a simulated height of 2,500-3,000 m (LHTL).
View Article and Find Full Text PDFThe efficiency of "living high, training low" (LHTL) remains controversial, despite its wide utilization. This study aimed to verify whether maximal and/or submaximal aerobic performance were modified by LHTL and whether these effects persist for 15 days after returning to normoxia. Last, we tried to elucidate whether the mechanisms involved were only related to changes in oxygen-carrying capacity.
View Article and Find Full Text PDFRespir Physiol Neurobiol
February 2006
Am J Respir Crit Care Med
February 2005
Exposure to high altitude induces pulmonary hypertension that may lead to life-threatening conditions. In a randomized, double-blind, placebo-controlled study, the effects of oral sildenafil on altitude-induced pulmonary hypertension and gas exchange in normal subjects were examined. Twelve subjects (sildenafil [SIL] n = 6; placebo [PLA] n = 6) were exposed for 6 days at 4,350 m.
View Article and Find Full Text PDFBoth acute hypoxia and sildenafil may influence autonomic control through transient cardiovascular effects. In a double-blind study, we investigated whether sildenalfil (Sil) could interfere with cardiovascular effects of hypoxia. Twelve healthy men [placebo (Pla) n = 6; Sil, n = 6] were exposed to an altitude of 4,350 m during 6 days.
View Article and Find Full Text PDF