This article introduces an advanced Koopman mode decomposition (KMD) technique-coined Featurized Koopman Mode Decomposition (FKMD)-that uses delay embedding and a learned Mahalanobis distance to enhance analysis and prediction of high-dimensional dynamical systems. The delay embedding expands the observation space to better capture underlying manifold structures, while the Mahalanobis distance adjusts observations based on the system's dynamics. This aids in featurizing KMD in cases where good features are not a priori known.
View Article and Find Full Text PDFExtracellular signals induce changes to molecular programs that modulate multiple cellular phenotypes, including proliferation, motility, and differentiation status. The connection between dynamically adapting phenotypic states and the molecular programs that define them is not well understood. Here we develop data-driven models of single-cell phenotypic responses to extracellular stimuli by linking gene transcription levels to "morphodynamics" - changes in cell morphology and motility observable in time-lapse image data.
View Article and Find Full Text PDFTime-lapse imaging is a powerful approach to gain insight into the dynamic responses of cells, but the quantitative analysis of morphological changes over time remains challenging. Here, we exploit the concept of "trajectory embedding" to analyze cellular behavior using morphological feature trajectory histories-that is, multiple time points simultaneously, rather than the more common practice of examining morphological feature time courses in single timepoint (snapshot) morphological features. We apply this approach to analyze live-cell images of MCF10A mammary epithelial cells after treatment with a panel of microenvironmental perturbagens that strongly modulate cell motility, morphology, and cell cycle behavior.
View Article and Find Full Text PDFThe weighted ensemble (WE) family of methods is one of several statistical mechanics-based path sampling strategies that can provide estimates of key observables (rate constants and pathways) using a fraction of the time required by direct simulation methods such as molecular dynamics or discrete-state stochastic algorithms. WE methods oversee numerous parallel trajectories using intermittent overhead operations at fixed time intervals, enabling facile interoperability with any dynamics engine. Here, we report on the major upgrades to the WESTPA software package, an open-source, high-performance framework that implements both basic and recently developed WE methods.
View Article and Find Full Text PDFThe weighted ensemble (WE) simulation strategy provides unbiased sampling of nonequilibrium processes, such as molecular folding or binding, but the extraction of rate constants relies on characterizing steady-state behavior. Unfortunately, WE simulations of sufficiently complex systems will not relax to steady state on observed simulation times. Here, we show that a postsimulation clustering of molecular configurations into "microbins" using methods developed in the Markov State Model (MSM) community can yield unbiased kinetics from WE data before steady-state convergence of the WE simulation itself.
View Article and Find Full Text PDFGap junctions establish direct pathways for cells to transfer metabolic and electrical messages. The local lipid environment is known to affect the structure, stability and intercellular channel activity of gap junctions; however, the molecular basis for these effects remains unknown. Here, we incorporate native connexin-46/50 (Cx46/50) intercellular channels into a dual lipid nanodisc system, mimicking a native cell-to-cell junction.
View Article and Find Full Text PDFProbability currents are fundamental in characterizing the kinetics of nonequilibrium processes. Notably, the steady-state current J for a source-sink system can provide the exact mean-first-passage time (MFPT) for the transition from the source to sink. Because transient nonequilibrium behavior is quantified in some modern path sampling approaches, such as the "weighted ensemble" strategy, there is strong motivation to determine bounds on J-and hence on the MFPT-as the system evolves in time.
View Article and Find Full Text PDFDespite the development of massively parallel computing hardware including inexpensive graphics processing units (GPUs), it has remained infeasible to simulate the folding of atomistic proteins at room temperature using conventional molecular dynamics (MD) beyond the microsecond scale. Here, we report the folding of atomistic, implicitly solvated protein systems with folding times τ ranging from ∼10 μs to ∼100 ms using the weighted ensemble (WE) strategy in combination with GPU computing. Starting from an initial structure or set of structures, WE organizes an ensemble of GPU-accelerated MD trajectory segments via intermittent pruning and replication events to generate statistically unbiased estimates of rate constants for rare events such as folding; no biasing forces are used.
View Article and Find Full Text PDFUsing a manifold-based analysis of experimental diffraction snapshots from an X-ray free electron laser, we determine the three-dimensional structure and conformational landscape of the PR772 virus to a detector-limited resolution of 9 nm. Our results indicate that a single conformational coordinate controls reorganization of the genome, growth of a tubular structure from a portal vertex and release of the genome. These results demonstrate that single-particle X-ray scattering has the potential to shed light on key biological processes.
View Article and Find Full Text PDFMyotonic dystrophy type 2 is a genetic neuromuscular disease caused by the expression of expanded CCUG repeat RNAs from the non-coding region of the CHC-type zinc finger ucleic acid-inding rotein () gene. These CCUG repeats bind and sequester a family of RNA-binding proteins known as Muscleblind-like 1, 2, and 3 (MBNL1, MBNL2, and MBNL3), and sequestration plays a significant role in pathogenicity. MBNL proteins are alternative splicing regulators that bind to the consensus RNA sequence YGCY (Y = pyrimidine).
View Article and Find Full Text PDFCUG repeat expansions in the 3' UTR of dystrophia myotonica protein kinase (DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein-RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity.
View Article and Find Full Text PDF