Publications by authors named "Jeremy C McIntyre"

Background: Neuronal primary cilia are being recognized for their role in mediating signaling associated with a variety of neurobehaviors, including responses to drugs of abuse. They function as signaling hubs, enriched with a diverse array of G-protein coupled receptors (GPCRs), including several associated with motivation and drug-related behaviors. However, our understanding of how cilia regulate neuronal function and behavior is still limited.

View Article and Find Full Text PDF

ADP-ribosylation factor-like protein 13B (ARL13B), a regulatory GTPase and guanine exchange factor (GEF), enriches in primary cilia and promotes tumorigenesis in part by regulating Smoothened (SMO), GLI, and Sonic Hedgehog (SHH) signaling. Gliomas with increased , , and expression are more aggressive, but the relationship to cilia is unclear. Previous studies have showed that increasing ARL13B in glioblastoma cells promoted ciliary SMO accumulation, independent of exogenous SHH addition.

View Article and Find Full Text PDF

Neuronal primary cilia have recently emerged as important contributors to the central regulation of energy homeostasis. As non-motile, microtubule-based organelles, primary cilia serve as signaling antennae for metabolic status. The impairment of ciliary structure or function can produce ciliopathies for which obesity is a hallmark phenotype and global ablation of cilia induces non-syndromic adiposity in mouse models.

View Article and Find Full Text PDF

Primary cilia are cellular appendages critical for diverse types of Signaling. They are found on most cell types, including cells throughout the CNS. Cilia preferentially localize certain G-protein-coupled receptors (GPCRs) and are critical for mediating the signaling of these receptors.

View Article and Find Full Text PDF

Cilia on neurons play critical roles in both the development and function of the central nervous system (CNS). While it remains challenging to elucidate the precise roles for neuronal cilia, it is clear that a subset of G-protein-coupled receptors (GPCRs) preferentially localize to the cilia membrane. Further, ciliary GPCR signaling has been implicated in regulating a variety of behaviors.

View Article and Find Full Text PDF

Olfactory GPCRs (ORs) in mammalian olfactory receptor neurons (ORNs) mediate excitation through the Gα family member Gα. Here we tentatively associate a second G protein, Gα, with inhibitory signaling in mammalian olfactory transduction by first showing that odor evoked phosphoinositide 3-kinase (PI3K)-dependent inhibition of signal transduction is absent in the native ORNs of mice carrying a conditional OMP-Cre based knockout of Gα. We then identify an OR from native rat ORNs that are activated by octanol through cyclic nucleotide signaling and inhibited by citral in a PI3K-dependent manner.

View Article and Find Full Text PDF

The neural mechanisms that underlie responses to drugs of abuse are complex, and impacted by a number of neuromodulatory peptides. Within the past 10 years it has been discovered that several of the receptors for neuromodulators are enriched in the primary cilia of neurons. Primary cilia are microtubule-based organelles that project from the surface of nearly all mammalian cells, including neurons.

View Article and Find Full Text PDF

Cilia of olfactory sensory neurons (OSNs) are the primary site of odor binding; hence, their loss results in anosmia, a clinical manifestation of pleiotropic ciliopathies for which there are no curative therapies. We used OSN-specific Ift88 knock-out mice () of both sexes to examine the mechanisms of ciliopathy-induced olfactory dysfunction and the potential for gene replacement to rescue odorant detection, restore olfactory circuitry, and restore odor-guided behaviors. Loss of OSN cilia in mice resulted in substantially reduced odor detection and odor-driven synaptic activity in the olfactory bulb (OB).

View Article and Find Full Text PDF

Interactions with the environment depend not only on sensory perception of external stimuli but also on processes of neuromodulation regulated by the internal state of an organism. These processes allow regulation of stimulus detection to match the demands of an organism influenced by its general brain state (satiety, wakefulness/sleep state, attentiveness, arousal, learning etc.).

View Article and Find Full Text PDF

Olfactory dysfunction is a pervasive but underappreciated health concern that affects personal safety and quality of life. Patients with olfactory dysfunctions have limited therapeutic options, particularly those involving congenital diseases. Bardet-Biedl syndrome (BBS) is one such disorder, where olfactory loss and other symptoms manifest from defective cilium morphology and/or function in various cell types/tissues.

View Article and Find Full Text PDF

In the last decade highly conserved cellular appendages called cilia have enjoyed a renewed interest from basic, biomedical scientists, and clinicians alike. This interest has grown upon the elucidation that cilia throughout the body serve as important sensory and signaling centers in both development and adult homeostasis. Furthermore, the identification of several rare genetic disorders associated with cilia dysfunction has broadened the field.

View Article and Find Full Text PDF

Unlabelled: The olfactory epithelium (OE) is one of the few tissues to undergo constitutive neurogenesis throughout the mammalian lifespan. It is composed of multiple cell types including olfactory sensory neurons (OSNs) that are readily replaced by two populations of basal stem cells, frequently dividing globose basal cells and quiescent horizontal basal cells (HBCs). However, the precise mechanisms by which these cells mediate OE regeneration are unclear.

View Article and Find Full Text PDF

Cilia are evolutionarily conserved organelles found on many mammalian cell types, including neuronal populations. Although neuronal cilia, including those on olfactory sensory neurons (OSNs), are often delineated by localization of adenylyl cyclase 3 (AC3, also known as ADCY3), the mechanisms responsible for targeting integral membrane proteins are largely unknown. Post-translational modification by small ubiquitin-like modifier (SUMO) proteins plays an important role in protein localization processes such as nuclear-cytosolic transport.

View Article and Find Full Text PDF

Cilia dysfunction underlies a class of human diseases with variable penetrance in different organ systems. Across eukaryotes, intraflagellar transport (IFT) facilitates cilia biogenesis and cargo trafficking, but our understanding of mammalian IFT is insufficient. Here we perform live analysis of cilia ultrastructure, composition and cargo transport in native mammalian tissue using olfactory sensory neurons.

View Article and Find Full Text PDF

Rationale: Kv1.5 (KCNA5) mediates the ultra-rapid delayed rectifier current that controls atrial action potential duration. Given its atrial-specific expression and alterations in human atrial fibrillation, Kv1.

View Article and Find Full Text PDF

Alterations in cilia formation or function underlie a growing class of pleiotropic disorders termed ciliopathies. The genetic basis of ciliopathies is remarkably complex, with an incomplete but expanding list of more than 89 loci implicated in various disorders. Current treatment of ciliopathies is limited to symptomatic therapy.

View Article and Find Full Text PDF

Cilia are evolutionarily conserved microtubule-based organelles that are crucial for diverse biological functions, including motility, cell signaling and sensory perception. In humans, alterations in the formation and function of cilia manifest clinically as ciliopathies, a growing class of pleiotropic genetic disorders. Despite the substantial progress that has been made in identifying genes that cause ciliopathies, therapies for these disorders are not yet available to patients.

View Article and Find Full Text PDF

Cilia are highly specialized microtubule-based organelles that have pivotal roles in numerous biological processes, including transducing sensory signals. Defects in cilia biogenesis and transport cause pleiotropic human ciliopathies. Mutations in over 30 different genes can lead to cilia defects, and complex interactions exist among ciliopathy-associated proteins.

View Article and Find Full Text PDF

The small GTPase Ran and the importin proteins regulate nucleocytoplasmic transport. New evidence suggests that Ran GTP and the importins are also involved in conveying proteins into cilia. In this study, we find that Ran GTP accumulation at the basal bodies is coordinated with the initiation of ciliogenesis.

View Article and Find Full Text PDF

Voltage-gated potassium (Kv) channels are critical for neuronal excitability and are targeted to specific subcellular compartments to carry out their unique functions. While it is widely believed that Kv channels exist as heteromeric complexes in neurons, direct tests of the hypothesis that specific heteromeric channel populations display divergent spatial and temporal dynamics are limited. Using a bimolecular fluorescence complementation approach, we monitored the assembly and localization of cell surface channel complexes in living cells.

View Article and Find Full Text PDF

Neurogenesis of projection neurons requires that axons be initiated, extended, and connected. Differences in the expression of axon growth and guidance genes must drive these events, but comprehensively characterizing these differences in a single neuronal type has not been accomplished. Guided by a catalog of gene expression in olfactory sensory neurons (OSNs), in situ hybridization and immunohistochemistry revealed that Cxcr4 and Dbn1, two axon initiation genes, marked the developmental transition from basal progenitor cells to immature OSNs in the olfactory epithelium.

View Article and Find Full Text PDF

The mechanisms selecting a single odorant receptor (OR) gene for expression in each olfactory sensory neuron (OSN) establish an OR expression pattern critical for odor discrimination. These mechanisms are largely unknown, but putative OR promoters contain homeodomain-like sites, implicating homeobox transcription factors such as Emx2. At embryonic day 18.

View Article and Find Full Text PDF

The olfactory epithelium has the unusual ability to replace its neurons.We forced replacement of mouse olfactory sensory neurons by bulbectomy. Microarray, bioinformatics, and in situ hybridization techniques detected a rapid shift in favor of pro-apoptotic proteins, a progressive immune response by macrophages and dendritic cells, and identified or predicted 439 mRNAs enriched in olfactory sensory neurons, including gene silencing factors and sperm flagellar proteins.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontgvmbnckcskfs4k25gqqe8jllg6tgct9): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once