Mammalian mucin-type O-glycosylation is initiated by a large family of ∼20 UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferases (ppGalNAc Ts) that transfer α-GalNAc from UDP-GalNAc to Ser and Thr residues of polypeptide acceptors. Characterizing the peptide substrate specificity of each isoform is critical to understanding their properties, biological roles, and significance. Presently, only the specificities of ppGalNAc T1, T2, and T10 and the fly orthologues of T1 and T2 have been systematically characterized utilizing random peptide substrates.
View Article and Find Full Text PDFWilliam's syndrome (WS) features a spectrum of neurocognitive and behavioral abnormalities due to a rare 1.5 MB deletion that includes about 24-28 genes on chromosome band 7q11.23.
View Article and Find Full Text PDFThe purpose of this study was to prepare and characterize antioxidant nanospheres composed of multiple alpha-lipoic acid-containing compounds (mALAs). It was found that the nanospheres were remarkably stable under physiologic conditions, maintained the antioxidant property of alpha-lipoic acid, and could be destabilized oxidatively and enzymatically. The preparations were simple and highly reproducible providing a new strategy for the development of nanometer-sized antioxidant biomaterials.
View Article and Find Full Text PDFA novel group of alpha-lipoic acid-containing hydrophobic prodrugs of non-steroidal anti-inflammatory drugs (NSAIDs) was synthesized and transformed into nanometer-sized prodrugs (nanoprodrugs). Three NSAIDs, indomethacin, ibuprofen and naproxen were linked to alpha-lipoic acid via tetraethylene glycol through hydrolytically degradable ester bonds. The three bifunctional derivatives were dissolved in organic solvents and capable of forming stable nanoprodrugs upon addition of the organic solutions into aqueous phase through the spontaneous emulsification mechanism.
View Article and Find Full Text PDF