Background: Home visual acuity tests could ease pressure on ophthalmic services by facilitating remote review of patients. Home tests may have further utility in giving service users frequent updates of vision outcomes during therapy, identifying vision problems in an asymptomatic population, and engaging stakeholders in therapy.
Methods: Children attending outpatient clinics had visual acuity measured 3 times at the same appointment: Once by a registered orthoptist per clinical protocols, once by an orthoptist using a tablet-based visual acuity test (iSight Test Pro, Kay Pictures), and once by an unsupervised parent/carer using the tablet-based test.
The aim of this study was to investigate whether the cellular uptake of cargo proteins can be enhanced by fusing a Tat peptide in the center of proteins; glutathione-S-transferase (GST)-Tat-green fluorescent protein (GFP) and GST-GFP-Tat proteins were first constructed and expressed. The cellular internalization of both proteins was then evaluated and compared in HeLa cells using fluorescent microscopy and flow cytometry, as well as the transdermal delivery in human skin using confocal microscopy. Results from in vitro cell experiments showed that GST-Tat-GFP protein efficiently internalized into HeLa cells when a Tat peptide was fused in the center of proteins, whereas its efficiency is lower than that of GST-GFP-Tat protein with a Tat peptide terminal fused.
View Article and Find Full Text PDFThe aim of this study is to investigate the interactions between TAT peptides and a neutral DOPC bilayer by using neutron lamellar diffraction. The distribution of TAT peptides and the perturbation of water distribution across the DOPC bilayer were revealed. When compared to our previous study on an anionic DOPC/DOPS bilayer (X.
View Article and Find Full Text PDFThe purpose of this study was to evaluate whether topical application of superoxide dismutase with cell penetrating peptide (HIV-TAT) could protect against skin damage induced by UVB irradiation in humans. The permeability through stratum corneum of large proteins linked to TAT peptide was firstly confirmed by confocal microscopy and tape stripping. Ten healthy volunteers with either Fitzpatrick skin type II or III were recruited in this clinical study.
View Article and Find Full Text PDFChlorhexidine (CHX) is an effective anti-bacterial agent whose mode of action is thought to be the disruption of the cell membrane. We tested the capability of the Slipids all atom force fields using data from neutron scattering and NMR experiments on the drug chlorhexidine in a 1,2-dimyrisoyl-3-sn-phosphatidylcholine (DMPC) membrane. Since it is not known what the charge of the CHX molecule is inside an apolar environment, a neutral, as well as a +1 and +2 charge model for the molecule were created and tested at several concentrations.
View Article and Find Full Text PDFTAT peptide is one of the best-characterized cell penetrating peptides derived from the transactivator of transcription protein from the human immunodeficiency virus 1. The aim of this study was to investigate the interaction between TAT peptide and partially negatively-charged phospholipid bilayer by using lamellar neutron diffraction. The main findings are the existence of a contiguous water channel across the bilayer in the presence of TAT peptide.
View Article and Find Full Text PDFThe aim of this study is to elucidate how the Isatidis Radix ( bǎn lán gēn) tonic, as an aqueous mixture of hundreds of compositions, interrupts the infection of influenza viruses to their host cells. The efficacy of the tonic was evaluated and expressed as cell proliferation rate and plaque reduction rate in Madin-Darby Canine Kidney (MDCK) cells, against 3 strains of influenza A and B viruses. This boiling water (at 100°C) extract of Isatidis Radix (RIE) showed antiviral activity against influenza virus A and B.
View Article and Find Full Text PDFA novel long-circulating and pH-responsive dendrimer nanocarrier was prepared for delivering 5-fluorouracil (5-FU) to tumors through the targeting of nanoparticles to the low pH environment of tumors. The nanocarrier, poly(2-(N,N-diethylamino)ethyl methacrylate) with methoxy-poly(ethylene glycol)-poly(amidoamine) (PPD), had a core-shell structure with 4.0 G poly(amidoamine) (PAMAM) as the core and parallel poly(2-(N,N-diethylamino)ethyl methacrylate) (PDEA) chains and methoxy-poly(ethylene glycol) (mPEG) chains as the shell.
View Article and Find Full Text PDFDifferential Scanning Calorimetry studies of a synthetic peptide revealed the peptide decreased the temperature of the lamellar-hexagonal phase transition of cis-trans mixtures of phosphatidylethanolamine. The transition enthalpy varied significantly with lipid composition. The findings are discussed with reference to peptide saturation on the bilayer surface, bilayer thinning and peptide orientation.
View Article and Find Full Text PDFCardiovasc Pathol
January 2011
Introduction: Myxomatous mitral valve disease (MMVD) is the single most common acquired cardiac disease of dogs and is a disease of significant veterinary importance. It also bears close similarities to mitral valve prolapse in humans and therefore is a disease of emerging comparative interest. We have previously mapped the structure of collagen fibrils in valve leaflets using synchrotron X-rays and have demonstrated changes in collagen structure associated with the regions of disease.
View Article and Find Full Text PDFAnnexins constitute a family of calcium-dependent membrane-binding proteins and can be classified into two groups, depending on the length of the N-terminal domain unique for each individual annexin. The N-terminal domain of annexin A1 can adopt an alpha-helical conformation and has been implicated in mediating the membrane aggregation behavior of this protein. Although the calcium-independent interaction of the annexin A1 N-terminal domain has been known for some time, there was no structural information about the membrane interaction of this secondary membrane-binding site of annexin A1.
View Article and Find Full Text PDFCollagen fibrils, a major component of mitral valve leaflets, play an important role in defining shape and providing mechanical strength and flexibility. Histopathological studies show that collagen fibrils undergo dramatic changes in the course of myxomatous mitral valve disease in both dogs and humans. However, little is known about the detailed organization of collagen in this disease.
View Article and Find Full Text PDFBackground: Soluble Alzheimer's Abeta oligomers autoinsert into neuronal cell membranes, contributing to the pathology of Alzheimer's Disease (AD), and elevated serum cholesterol is a risk factor for AD, but the reason is unknown. We investigated potential connections between these two observations at the membrane level by testing the hypothesis that Abeta(1-42) relocates membrane cholesterol.
Results: Oligomers of Abeta(1-42), but not the monomeric peptide, inserted into cholesterol-containing phosphatidylcholine monolayers with an anomalously low molecular insertion area, suggesting concurrent lipid rearrangement.
As part of a study of the molecular basis of membrane fusion by enveloped viruses, we have used neutron diffraction to study the lamellar (L(α)) to inverse hexagonal (H(II)) phase transition in the phospholipid N-methylated dioleoylphosphatidylethanolamine. This lipid was chosen because its phase transitions are particularly sensitive to the presence of agents that have been demonstrated to promote or inhibit membrane fusion. Two different geometries of neutron diffraction were used: small angle scattering (SANS) and a membrane diffractometer.
View Article and Find Full Text PDFHuman islet amyloid polypeptide (hIAPP) forms amyloid deposits in non-insulin-dependent diabetes mellitus (NIDDM). Pre-fibrillar hIAPP oligomers (in contrast to monomeric IAPP or mature fibrils) increase membrane permeability, suggesting an important role in the disease. In the first structural study of membrane-associated hIAPP, lamellar neutron diffraction shows that oligomeric hIAPP inserts into phospholipid bilayers, and extends across the membrane.
View Article and Find Full Text PDFThe effect of myristoylation on the 15-amino-acid peptide from the membrane-binding N-terminus of ADP ribosylation factor 1 (ARF1) was studied using neutron diffraction and circular dichroism. A previous study on the non-acylated form indicated that the peptide lies parallel to the membrane, at a shallow depth and in the vicinity of the phosphorylcholine headgroups. It was suggested that the helix does not extend past residue 12, an important consequence for the linking region of the ARF1 protein.
View Article and Find Full Text PDFTemperature-scan X-ray scattering was used to study the effect of the fusion peptide of simian immunodeficiency virus (SIV) on the lipid polymorphism of N-methylated dioleoylphosphatidylethanolamine (DOPE-Me), in the presence and absence of one or both of the fusion inhibitors carbobenzoxy-D-phenylalanine-L-phenylalanine-glycine and 1-lauroyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC). Using X-ray diffraction at stations 2.1 and 8.
View Article and Find Full Text PDFMany different types of organisms use antimicrobial peptides, typically 20-40 amino acids in length, for defence against infection. Most are capable of rapidly killing a wide range of microbial cells. They have been classified according to their active structures into six extensive groups.
View Article and Find Full Text PDFThe small G protein adenosine diphosphate ribosylation factor-1 (ARF1) is activated by cell membrane binding of a self-folding N-terminal domain. We present a model of the human ARF1 N-terminal peptide in planar lipid bilayers, determined from neutron lamellar diffraction and circular dichroism data with molecular modelling. This amphipathic domain lies at a shallow membrane depth, ideal for regulation of the ARF1 bio-timer by rapid, reversible membrane binding.
View Article and Find Full Text PDFThe effects of two fusion inhibitors on the lipid polymorphism of N-methylated dioleoylphosphatidylethanolamine were studied using temperature-resolved, small-angle X-ray diffraction. The inhibitory role of the tri-peptide carbobenzoxy-D-phenylalanine-L-phenylalanine-glycine and the lipid 1-lauroyl-2-hydroxy-sn-glycero-3-phosphocholine in the fusion pathway was studied, using the non-lamellar phase behaviour of the lipid as a model. We used p15EK, the N-terminal region of gp41 from feline leukaemia virus as promoter of membrane fusion, and measured the structural parameters of each observed lipid phase as a function of temperature.
View Article and Find Full Text PDF