Publications by authors named "Jeremy Bourgalais"

Stereochemistry plays a key role in both fundamental chemical processes and the dynamics of a large set of molecular systems of importance in chemistry, medicine and biology. Predicting the chemical transformations of organic precursors in such environments requires detailed kinetic models based on laboratory data. Reactive intermediates play a critical role in constraining the models but their identification and especially their quantification remain challenging.

View Article and Find Full Text PDF

This study investigates the complex interaction between ozone and the autoxidation of 1-hexene over a wide temperature range (300-800 K), overlapping atmospheric and combustion regimes. It is found that atmospheric molecular mechanisms initiate the oxidation of 1-hexene from room temperature up to combustion temperatures, leading to the formation of highly oxygenated organic molecules. As temperature rises, the highly oxygenated organic molecules contribute to radical-branching decomposition pathways inducing a high reactivity in the low-temperature combustion region, i.

View Article and Find Full Text PDF

The accurate calculation of adiabatic ionization energies (AIEs) for polycyclic aromatic hydrocarbons (PAHs) and their substituted analogues is essential for understanding their electronic properties, reactivity, stability, and environmental/health implications. This study demonstrates that the M06-2X density functional theory method excels in predicting the AIEs of polycyclic aromatic hydrocarbons and related molecules, rivaling the (R)CCSD(T)-F12 method in terms of accuracy. These findings suggest that M06-2X, coupled with an appropriate basis set, represents a reliable and efficient method for studying polycyclic aromatic hydrocarbons and related molecules, aligning well with the experimental techniques.

View Article and Find Full Text PDF

Alkyl nitrates thermally decompose by homolytic cleavage of the weak nitrate bond at very low temperatures (e.g., around 500 K at reaction times of a few seconds).

View Article and Find Full Text PDF

Neopentane is an ideal fuel model to study low-temperature oxidation chemistry. The significant discrepancies between experimental data and simulations using the existing neopentane models indicate that an updated study of neopentane oxidation is needed. In this work, neopentane oxidation experiments are carried out using two jet-stirred reactors (JSRs) at 1 atm, at a residence time of 3 s, and at three different equivalence ratios of 0.

View Article and Find Full Text PDF

Despite decades of research on alkene ozonolysis, the kinetic network of the archetypal case of ethylene (CHCH) with ozone (O) still lacks consensus. In this work, experimental evidence of an elusive diradical pathway is provided through the detection of the 2-hydroperoxyacetaldehyde ketohydroperoxide and its decomposition product, glyoxal.

View Article and Find Full Text PDF

Cyclohexane oxidation chemistry was investigated using a near-atmospheric pressure jet-stirred reactor at = 570 K and equivalence ratio ϕ = 0.8. Numerous intermediates including hydroperoxides and highly oxygenated molecules were detected using synchrotron vacuum ultraviolet photoelectron photoion coincidence spectroscopy.

View Article and Find Full Text PDF

-Butyl hydroperoxide (BuOOH) is a common intermediate in the oxidation of organic compounds that needs to be accurately quantified in complex gas mixtures for the development of chemical kinetic models of low temperature combustion. This work presents a combined theoretical and experimental investigation on the synchrotron-based VUV single photon ionization of gas-phase BuOOH in the 9.0 - 11.

View Article and Find Full Text PDF

In the atmosphere of Titan, Saturn's main satellite, molecular growth is initiated by 85.6 nm extreme ultraviolet (EUV) photons triggering a chemistry with charged and free-radical species. However, the respective contribution of these species to the complexification of matter is far from being known.

View Article and Find Full Text PDF

The in situ exploration of Titan's atmosphere requires the development of laboratory experiments to understand the molecular growth pathways initiated by photochemistry in the upper layers of the atmosphere. Key species and dominant reaction pathways are used to feed chemical network models that reproduce the chemical and physical processes of this complex environment. Energetic UV photons initiate highly efficient chemistry by forming reactive species in the ionospheres of the satellite.

View Article and Find Full Text PDF

Through the use of tunable vacuum ultraviolet light generated by the DESIRS VUV synchrotron beamline, a jet-stirred reactor was coupled for the first time to an advanced photoionization mass spectrometer based upon a double imaging PhotoElectron PhotoIon COincidence (iPEPICO) scheme. This new coupling was used to investigate the low-temperature oxidation of n-pentane, a prototype molecule for gasoline or diesel fuels. Experiments were performed under quasi-atmospheric pressure (1.

View Article and Find Full Text PDF

Rationale: Quadrupole mass spectrometers equipped with an electron ionization (EI) sources have been widely used in space exploration to investigate the composition of planetary surfaces and atmospheres. However, the complexity of the samples and the minimal calibration for the fragmentation of molecules in the ionization chambers have prevented the deconvolution of the majority of the mass spectra obtained at different targets, thus limiting the determination of the exact composition of the samples analyzed. We propose a Monte-Carlo approach to solve this issue mathematically.

View Article and Find Full Text PDF

Reactions of the methylidyne (CH) radical with ammonia (NH), methylamine (CHNH), dimethylamine ((CH)NH), and trimethylamine ((CH)N) have been investigated under multiple collision conditions at 373 K and 4 Torr. The reaction products are detected by using soft photoionization coupled to orthogonal acceleration time-of-flight mass spectrometry at the Advanced Light Source (ALS) synchrotron. Kinetic traces are employed to discriminate between CH reaction products and products from secondary or slower reactions.

View Article and Find Full Text PDF

Product detection studies of C((3)P) atom reactions with ethylene, C2H4(X(1)Ag) and propylene, C3H6(X(1)A') are carried out in a flow tube reactor at 332 K and 4 Torr (553.3 Pa) under multiple collision conditions. Ground state carbon atoms are generated by 193 nm laser photolysis of carbon suboxide, C3O2 in a buffer of helium.

View Article and Find Full Text PDF