Publications by authors named "Jeremy Bastid"

Temozolomide (TMZ) is part of the therapeutic armamentarium used in managing pediatric cancers; however, available oral forms (capsules) are not adapted for use in children. Our aim was to assess the dose accuracy and stability of TMZ using capsule contents mixed with food compared with a novel, ready-to-use liquid formulation specifically developed for children (Ped-TMZ, brand name KIZFIZO). Dose accuracy and TMZ stability testing were performed with TMZ capsule contents (90 mg) mixed with food vehicles (apple juice, apple sauce, cream, milk, and mashed potatoes) and compared to an equivalent dose of Ped-TMZ.

View Article and Find Full Text PDF

Background: Temozolomide (TMZ) oral suspension (Ped-TMZ, KIZFIZO) is being developed for the treatment of relapsed or refractory neuroblastoma, a rare cancer affecting infants and young children. The study assessed the safety and the bioequivalence of this novel pediatric formulation with existing TMZ oral capsules.

Methods: In vitro dissolution profiles and the bioequivalence were evaluated following the European Medicines Agency "Guidelines on the investigation of Bioequivalence".

View Article and Find Full Text PDF

The development of oral pediatric forms by pharmaceutical companies is still insufficient. In fact, many drugs used in paediatric oncology, such as temozolomide, are not labeled and adapted for paediatric use. Temozolomide (TMZ) is an alkylating agent used as the standard of care for many adult and pediatric brain tumours, such as neuroblastoma, glioblastoma and medulloblastoma.

View Article and Find Full Text PDF

Among inflammatory mediators, a growing body of evidence emphasizes the contribution of the interleukin 17 (IL-17) cytokine family in malignant diseases. Besides IL-17A, the prototypic member of the IL-17 family, several experimental findings strongly support the role of the IL-17B/IL-17 receptor B (IL-17RB) pathway in tumorigenesis and resistance to anticancer therapies. In mouse models, IL-17B signaling through IL-17RB directly promotes cancer cell survival, proliferation, and migration, and induces resistance to conventional chemotherapeutic agents.

View Article and Find Full Text PDF

Immune checkpoint inhibitors have revolutionized cancer treatment. However, many cancers are resistant to ICIs, and the targeting of additional inhibitory signals is crucial for limiting tumor evasion. The production of adenosine via the sequential activity of CD39 and CD73 ectoenzymes participates to the generation of an immunosuppressive tumor microenvironment.

View Article and Find Full Text PDF

Interleukin 17B (IL-17B) is a pro-inflammatory cytokine that belongs to the IL-17 cytokines family and binds to IL-17 receptor B (IL-17RB). Here we found that high expression of IL-17B and IL-17RB is associated with poor prognosis in patients with breast cancer and that IL-17B expression upregulation is specifically associated with poorer survival in patients with basal-like breast cancer. We thus focused on IL-17B role in breast cancer by using luminal and triple negative (TN)/basal-like tumor cell lines.

View Article and Find Full Text PDF

Estrogen receptor-, progesterone receptor- and HER2-negative breast cancers, also known as triple-negative breast cancers (TNBCs), have poor prognoses and are refractory to current therapeutic agents, including epidermal growth factor receptor (EGFR) inhibitors. Resistance to anti-EGFR therapeutic agents is often associated with sustained kinase phosphorylation, which promotes EGFR activation and translocation to the nucleus and prevents these agents from acting on their targets. The mechanisms underlying this resistance have not been fully elucidated.

View Article and Find Full Text PDF

T cell-mediated immunity is a major component of antitumor immunity. In order to be efficient, effector T cells must leave the circulation and enter into the tumor tissue. Regulatory T cells (Treg) from gastric cancer patients, but not from healthy volunteers, potently inhibit migration of conventional T cells through activated endothelium.

View Article and Find Full Text PDF

We report that CD39-expressing-melanoma cells inhibited both T-cell proliferation and the generation of cytotoxic effectors in an adenosine-dependent manner, and that treatment with a CD39-blocking antibody alleviated tumor-mediated immunosuppression. Thus, blocking CD39 ectonucleotidase may represent a novel immunotherapeutic strategy to restore antitumor immunity.

View Article and Find Full Text PDF

Pro-inflammatory IL-17 cytokines were initially described for their pathogenic role in chronic inflammatory diseases and subsequent accumulating evidence indicated their involvement in carcinogenesis. In the present study we report that IL-17A and IL-17E receptors subunits mRNA expressions are upregulated in breast cancers versus normal samples. IL-17E, which is undetectable in most normal breast tissues tested, seems more expressed in some tumors.

View Article and Find Full Text PDF

The ectonucleotidases CD39 and CD73 hydrolyze extracellular adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to generate adenosine, which binds to adenosine receptors and inhibits T-cell and natural killer (NK)-cell responses, thereby suppressing the immune system. The generation of adenosine via the CD39/CD73 pathway is recognized as a major mechanism of regulatory T cell (Treg) immunosuppressive function. The number of CD39⁺ Tregs is increased in some human cancers, and the importance of CD39⁺ Tregs in promoting tumor growth and metastasis has been demonstrated using several in vivo models.

View Article and Find Full Text PDF

We have previously reported that a subset of breast tumors are infiltrated with IL-17A-producing tumor-associated lymphocytes and that IL-17A cytokine is principally associated with estrogen receptor negative (ER) and triple negative, basal-like tumors. We established that IL-17A producing lymphocytes induced cancer cell proliferation, chemoresistance, and invasion, indicating that IL-17A is a potential therapeutic target for breast malignancies.

View Article and Find Full Text PDF

The proinflammatory cytokine Interleukin 17A (hereafter named IL-17A) or IL-17A producing cells are elevated in breast tumors environment and correlate with poor prognosis. Increased IL-17A is associated with ER(-) or triple negative tumors and reduced Disease Free Survival. However, the pathophysiological role of IL-17A in breast cancer remains unclear although several studies suggested its involvement in cancer cell dissemination.

View Article and Find Full Text PDF

Regulatory T (Treg) cells can balance normal tissue homeostasis by limiting inflammatory tissue damage, e.g. during pathogen infection, but on the other hand can also limit protective immunity induced during natural infection or following vaccination.

View Article and Find Full Text PDF

Over the past decade, much effort has been made to understand how cancers metastasize. In deciphering the metastatic process, a vast amount of work has focused on the role of the epithelial to mesenchymal transition (EMT), which, in experimental models, confers tumor cells with invasive and metastatic abilities, resistance to therapies, as well as cancer stem cell phenotype-properties that have a major impact on cancer prognosis. Searching "EMT and cancer" in PubMed retrieves thousands of original research articles, yet, we haven't answered the most basic question in the field: has EMT any relevance in human tumors?

View Article and Find Full Text PDF

The SNAIL and SLUG transcription factors play important roles in embryogenesis owing to their anti-apoptotic properties and their ability to promote morphogenetic changes by inducing epithelial-mesenchymal transitions (EMT). These characteristics provide many of the proteins in these families with oncogenic and pro-metastatic capabilities when reactivated in cancers. The SCRATCH subgroup of the SNAIL superfamily, including SCRATCH1 and SCRATCH2, display distinct embryonic functions and diverge early in evolution.

View Article and Find Full Text PDF

Studies have suggested involvement of interleukin 17 (IL-17) in autoimmune diseases, although its effect on B cell biology has not been clearly established. Here we demonstrate that IL-17 alone or in combination with B cell-activating factor controlled the survival and proliferation of human B cells and their differentiation into immunoglobulin-secreting cells. This effect was mediated mainly through the nuclear factor-kappaB-regulated transcription factor Twist-1.

View Article and Find Full Text PDF

Metastasis is the main cause of death by cancer. Hence, establishing predictive markers constitutes a major clinical objective. The capacity for a tumor cell to migrate and survive from a primary tumor is often described as the ultimate step of Darwinian selection.

View Article and Find Full Text PDF

Twist1 and Twist2 are major regulators of embryogenesis. Twist1 has been shown to favor the metastatic dissemination of cancer cells through its ability to induce an epithelial-mesenchymal transition (EMT). Here, we show that a large fraction of human cancers overexpress Twist1 and/or Twist2.

View Article and Find Full Text PDF

Cancers have long been described as the result of successive selections of somatic cells progressively acquiring growth and survival advantages. Such a model was hardly compatible with the obvious heterogeneity of the cancer cell population present in tumors. This heterogeneity rather suggests that mutations hint multipotent cells that, in addition to the resulting proliferation and survival advantages, display differentiation capabilities.

View Article and Find Full Text PDF