Primary microRNAs (miRNAs) are the precursors of miRNAs that modulate the expression of most mRNAs in humans. They fold up into a hairpin structure that is cleaved at its base by an enzyme complex known as the Microprocessor (Drosha/DGCR8). While many of the molecular details are known, a complete understanding of what features distinguish primary miRNA from hairpin structures in other transcripts is still lacking.
View Article and Find Full Text PDFPotent, selective and broadly characterized small molecule modulators of protein function (chemical probes) are powerful research reagents. The pharmaceutical industry has generated many high-quality chemical probes and several of these have been made available to academia. However, probe-associated data and control compounds, such as inactive structurally related molecules and their associated data, are generally not accessible.
View Article and Find Full Text PDFmRNAs can fold into complex structures that regulate gene expression. Resolving such structures de novo has remained challenging and has limited our understanding of the prevalence and functions of mRNA structure. We use SHAPE-MaP experiments in living E.
View Article and Find Full Text PDFTo achieve the great potential of siRNA based gene therapy, safe and efficient systemic delivery in vivo is essential. Here we report reductively responsive hydrogel nanoparticles with highly uniform size and shape for systemic siRNA delivery in vivo. "Blank" hydrogel nanoparticles with high aspect ratio were prepared using continuous particle fabrication based on PRINT (particle replication in nonwetting templates).
View Article and Find Full Text PDFSmall interfering RNA (siRNA) is a novel therapeutic modality that benefits from nanoparticle mediated delivery. The most clinically advanced siRNA-containing nanoparticles are polymer-coated supramolecular assemblies of siRNA and lipids (lipid nanoparticles or LNPs), which protect the siRNA from nucleases, modulate pharmacokinetics of the siRNA, and enable selective delivery of siRNA to target cells. Understanding the mechanisms of assembly and delivery of such systems is complicated by the complexity of the dynamic supramolecular assembly as well as by its subsequent interactions with the biological milieu.
View Article and Find Full Text PDFAbsorption, distribution, metabolism, and excretion properties of a small interfering RNA (siRNA) formulated in a lipid nanoparticle (LNP) vehicle were determined in male CD-1 mice following a single intravenous administration of LNP-formulated [(3)H]-SSB siRNA, at a target dose of 2.5 mg/kg. Tissue distribution of the [(3)H]-SSB siRNA was determined using quantitative whole-body autoradiography, and the biostability was determined by both liquid chromatography mass spectrometry (LC-MS) with radiodetection and reverse-transcriptase polymerase chain reaction techniques.
View Article and Find Full Text PDFModern methods for the identification of therapeutic leads include chemical or virtual screening of compound libraries. Nature's library represents a vast and diverse source of leads, often exhibiting exquisite biological activities. However, the advancement of natural product leads into the clinic is often impeded by their scarcity, complexity, and nonoptimal properties or efficacy as well as the challenges associated with their synthesis or modification.
View Article and Find Full Text PDFThree cyclophilin inhibitors (DEBIO-025, SCY635, and NIM811) are currently in clinical trials for hepatitis C therapy. The mechanism of action of these, however, is not completely understood. There are at least 16 cyclophilins expressed in human cells which are involved in a diverse set of cellular processes.
View Article and Find Full Text PDFHost factor pathways are known to be essential for hepatitis C virus (HCV) infection and replication in human liver cells. To search for novel host factor proteins required for HCV replication, we screened a subgenomic genotype 1b replicon cell line (Luc-1b) with a kinome and druggable collection of 20,779 siRNAs. We identified and validated several enzymes required for HCV replication, including class III phosphatidylinositol 4-kinases (PI4KA and PI4KB), carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and mevalonate (diphospho) decarboxylase.
View Article and Find Full Text PDFA series of 4,5-disubstituted cis-pyrrolidinones was investigated as inhibitors of 17beta-HSD II for the treatment of osteoporosis. Biochemical data for several compounds are given. Compound 42 was selected as the lead candidate.
View Article and Find Full Text PDFBryostatin 1 represents a novel and potent therapeutic lead with a unique activity profile. Its natural and synthetic availability is severely limited. Function oriented synthesis provides a means to address this supply problem through the design of synthetically more accessible simplified structures that at the same time incorporate improved functional activity.
View Article and Find Full Text PDFBistramide A (1) is a marine natural product with broad, potent antiproliferative effects. Bistramide A has been reported to selectively activate protein kinase C (PKC) delta, leading to the view that PKCdelta is the principal mediator of antiproliferative activity of this natural product. Contrary to this observation, we established that bistramide A binds PKCdelta with low affinity, does not activate this kinase in vitro and does not translocate GFP-PKCdelta.
View Article and Find Full Text PDF4,5-Disubstituted cis-pyrrolidinones were investigated as inhibitors of type II 17beta-hydroxysteroid dehydrogenase (17beta-HSD). Early structure-activity relationship patterns for this class of compounds are discussed.
View Article and Find Full Text PDF[structure: see text] The C20 region of our bryostatin analogs was identified as a nonpharmacophoric site that could be varied to tune analogs for function and physical properties without significantly affecting their binding affinity for PKC. The use of this site in a late-stage diversification strategy has enabled the facile synthesis of a variety of new C20 analogs, all of which retain nanomolar affinity for PKC, in agreement with our pharmacophore hypothesis.
View Article and Find Full Text PDFSince the intrinsically poor immunogenicity of chronic lymphocytic leukemia (CLL) cells might be a key factor in allowing them to avoid immune control mechanisms, the development of methods to enhance CLL cell immunogenicity might lead to improved disease control. The ability of CLL cells to stimulate T cells was increased significantly by the protein kinase C (PKC) agonist phorbol myristic acetate (PMA). However, under serum-free conditions, PMA-activated CLL cells died within 48 hours.
View Article and Find Full Text PDFThe functional properties of four diacylglycerol (DAG) analogues were compared using cell-signaling assays based on the protein RasGRP1, a DAG-regulated Ras activator. Compounds 1 and 2, synthetic analogues of bryostatin 1, were compared to authentic bryostatin 1 and phorbol 12-myristate-13-acetate (PMA). The two "bryologues" were able to activate RasGRP1 signaling rapidly in cultured cells and isolated mouse thymocytes.
View Article and Find Full Text PDFStructurally simplified analogs of bryostatin 1, a marine natural product in clinical trials for the treatment of cancer, have been shown to be up to 50 times more potent than bryostatin 1 at inducing the translocation of PKCdelta-GFP from the cytosol of rat basophilic leukemia (RBL) cells. The end distribution of the protein is similar for all three compounds, despite a significant difference in translocation kinetics. The potency of the compounds for inducing the translocation response appears to be only qualitatively related to their binding affinity for PKC, highlighting the importance of using binding affinity in conjunction with real-time measurements of protein localization for the pharmacological profiling of biologically active agents.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2004
Intracellularly acting peptide modulators of signaling enzymes provide a powerful means to regulate signaling events. Delivery of peptides into cells is facilitated by conjugation to carrier peptides, such as Tat. When peptides are irreversibly conjugated to Tat, Tat-mediated subcellular localization may predominate, resulting in mislocalization of the peptide cargo.
View Article and Find Full Text PDFMacrocycle 1 is a new highly potent analogue of bryostatin 1, a promising anti-cancer agent currently in human clinical trials. In vitro, 1 displays picomolar affinity for PKC and exhibits over 100-fold greater potency than bryostatin 1 when tested against various human cancer cell lines. Macrocycle 1 can be generated in clinically required amounts by chemical synthesis in only 19 steps (LLS) and represents a new clinical lead for the treatment of cancer.
View Article and Find Full Text PDF