Publications by authors named "Jeremy A Hengst"

Our recent studies have identified a link between sphingolipid metabolites and the induction of a specialized form of regulated cell death termed immunogenic cell death (ICD). We have recently demonstrated that the synthetic cannabinoid (±) 5-epi CP 55,940 (5-epi) stimulates the accumulation of ceramide (Cer), and that inhibition of sphingosine kinase 1 (SphK1) enhances Cer accumulation and ICD-induction in human colorectal cancer (CRC) cell lines. We employed flow-cytometric, western blot analyses, pharmacological inhibitors of the sphingolipid metabolic pathway and small molecule agonists and antagonists of the CB receptors to further analyze the mechanism by which 5-epi induces Cer accumulation.

View Article and Find Full Text PDF

The three arms of the unfolded protein response (UPR) surveil the luminal environment of the endoplasmic reticulum (ER) and transmit information through the lipid bilayer to the cytoplasm to alert the cell of stress conditions within the ER lumen. That same lipid bilayer is the site of de novo synthesis of phospholipids and sphingolipids. Thus, it is no surprise that lipids are modulated by and are modulators of ER stress.

View Article and Find Full Text PDF

The Rho associated coiled-coil containing protein kinase (ROCK1 and ROCK2) and myotonic dystrophy-related Cdc-42 binding kinases (MRCKα and MRCKβ) are critical regulators of cell proliferation and cell plasticity, a process intimately involved in cancer cell migration and invasion. Previously, we reported the discovery of a novel small molecule (DJ4) selective multi-kinase inhibitor of ROCK1/2 and MRCKα/β. Herein, we further characterized the anti-proliferative and apoptotic effects of DJ4 in non-small cell lung cancer and triple-negative breast cancer cells.

View Article and Find Full Text PDF

We recently identified the sphingosine kinases (SphK1/2) as key intracellular regulators of immunogenic cell death (ICD) in colorectal cancer (CRC) cells. To better understand the mechanism by which SphK inhibition enhances ICD, we focused on the intracellular signaling pathways leading to cell surface exposure of calreticulin (ectoCRT). Herein, we demonstrate that ABT-263 and AZD-5991, inhibitors of Bcl-2/Bcl-X and Mcl-1, respectively, induce the production of ectoCRT, indicative of ICD.

View Article and Find Full Text PDF

Endogenous and synthetic cannabinoids have been shown to induce cancer cell death through the accumulation of the sphingolipid, ceramide (Cer). Recently, we have demonstrated that Cer accumulation enhances the induction of immunogenic cell death (ICD). The primary objective of this study was to demonstrate that (±) 5-epi CP 55,940 (5-epi), a by-product of the chemical synthesis of the synthetic cannabinoid CP 55,940, induces ICD in colorectal cancer (CRC) cells, and that modulation of the sphingolipid metabolic pathway through inhibition of the sphingosine kinases (SphKs) enhances these effects.

View Article and Find Full Text PDF

Agents that induce immunogenic cell death (ICD) alter the cellular localization of calreticulin (CRT), causing it to become cell surface-exposed within the plasma membrane lipid raft microdomain [cell surface-exposed CRT (ectoCRT)] where it serves as a damage associated-molecular pattern that elicits an antitumor immune response. We have identified the sphingolipid metabolic pathway as an integral component of the process of ectoCRT exposure. Inhibition of the sphingosine kinases (SphKs) enhances mitoxantrone-induced production of hallmarks of ICD, including ectoCRT production, with an absolute mean difference of 40 MFI (95% CI: 19-62; = 0.

View Article and Find Full Text PDF

The recently renewed interest in scientific rigor and reproducibility is of critical importance for both scientists developing new targeted small-molecule inhibitors and those employing these molecule in cellular studies, alike. While off-target effects are commonly considered as limitations for any given small-molecule inhibitor, the ability of a given compound to distinguish between enzyme isoforms is often neglected when employing compounds in cellular studies. To call attention to this issue, we have compared the results of an assay for "direct target engagement", the Cellular Thermal Shift Assay (CETSA), to the published isoform selectivity of 12 commercially available sphingosine kinase 1 and 2 (SphK 1 and SphK2) inhibitors.

View Article and Find Full Text PDF

Our sphingosine kinase inhibitor (SKI) optimization studies originated with the optimization of the SKI-I chemotype by replacement of the substituted benzyl rings with substituted phenyl rings giving rise to the discovery of SKI-178. We have recently reported that SKI-178 is a dual-targeted inhibitor of both sphingosine kinase isoforms (SphK1/2) and a microtubule disrupting agent (MDA). In mechanism-of-action studies, we have shown that these two separate actions synergize to induce cancer cell death in acute myeloid leukemia (AML) cell and animal models.

View Article and Find Full Text PDF

Aim: To further characterize the selectivity, mechanism-of-action and therapeutic efficacy of the novel small molecule inhibitor, SKI-178.

Methods: Using the state-of-the-art Cellular Thermal Shift Assay (CETSA) technique to detect "direct target engagement" of proteins intact cells, and assays, pharmacological assays and multiple mouse models of acute myeloid leukemia (AML).

Results: Herein, we demonstrate that SKI-178 directly target engages both Sphingosine Kinase 1 and 2.

View Article and Find Full Text PDF

Metastatic cancer cells show great plasticity in their migratory mechanisms. In this review we briefly describe the signal transduction pathways associated with the ROCK and MRCK kinases and their roles in cancer cell migration and in its plasticity. With respect to therapeutic strategies targeting metastatic cancers, selectively blocking a single target, such as ROCK or MRCK, can induce alternate modes of cancer cell migration (i.

View Article and Find Full Text PDF

We previously developed SKI-178 (N'-[(1E)-1-(3,4-dimethoxyphenyl)ethylidene]-3-(4-methoxxyphenyl)-1H-pyrazole-5-carbohydrazide) as a novel sphingosine kinase-1 (SphK1) selective inhibitor and, herein, sought to determine the mechanism-of-action of SKI-178-induced cell death. Using human acute myeloid leukemia (AML) cell lines as a model, we present evidence that SKI-178 induces prolonged mitosis followed by apoptotic cell death through the intrinsic apoptotic cascade. Further examination of the mechanism of action of SKI-178 implicated c-Jun NH2-terminal kinase (JNK) and cyclin-dependent protein kinase 1 (CDK1) as critical factors required for SKI-178-induced apoptosis.

View Article and Find Full Text PDF

Two structurally related protein kinase families, the Rho kinases (ROCK) and the myotonic dystrophy kinase-related Cdc42-binding kinases (MRCK) are required for migration and invasion of cancer cells. We hypothesized that simultaneous targeting of these two kinase families might represent a novel therapeutic strategy to block the migration and invasion of metastatic cancers. To this end, we developed DJ4 as a novel small molecule inhibitor of these kinases.

View Article and Find Full Text PDF

Human TPH2 (hTPH2) catalyzes the rate-limiting step in CNS serotonin biosynthesis. We characterized a single-nucleotide polymorphism (C2755A) in the hTPH2 gene that substitutes tyrosine for serine at position 41 in the regulatory domain of the enzyme. This polymorphism is associated with bipolar disorder and peripartum depression in a Chinese population.

View Article and Find Full Text PDF

Tumor-associated inflammation mediates the development of a systemic immunosuppressive milieu that is a major obstacle to effective treatment of cancer. Inflammation has been shown to promote the systemic expansion of immature myeloid cells which have been shown to exert immunosuppressive activity in laboratory models of cancer as well as cancer patients. Consequentially, significant effort is underway toward the development of therapies that decrease tumor-associated inflammation and immunosuppressive cells.

View Article and Find Full Text PDF

A host of beneficial effects have been attributed to the red wine polyphenol, resveratrol. Foremost, among these are its anti-cancer properties. Yet, the mechanism by which resveratrol achieves these effects are unknown.

View Article and Find Full Text PDF

The sphingolipid metabolic pathway represents a potential source of new therapeutic targets for numerous hyperproliferative/inflammatory diseases. Targets such as the sphingosine kinases (SphKs) have been extensively studied and numerous strategies have been employed to develop inhibitors against these enzymes. Herein, we report on the optimization of our novel small-molecule inhibitor SKI-I (N'-[(2-hydroxy-1-naphthyl)methylene]-3-(2-naphthyl)-1H-pyrazole-5-carbohydrazide) and the identification of a SphK1-specific analog, SKI-178, that is active in vitro and in vivo.

View Article and Find Full Text PDF

Cancer therapy has moved beyond conventional chemotherapeutics to more mechanism-based targeted approaches. Studies demonstrate that histone deacetylase (HDAC) is a promising target for anticancer agents. Numerous, structurally diverse, hydroxamic acid derivative, HDAC inhibitors have been reported and have been shown to induce growth arrest, differentiation, autophagy, and/or apoptotic cell death by inhibiting multiple signaling pathways in cancer cells.

View Article and Find Full Text PDF

Sphingosine kinase (SphK) is a lipid kinase with oncogenic activity, and SphK inhibitors (SKIs) are known for their anti-cancer activity. Here, we report highly efficient syntheses of SKIs and their aspirinyl (Asp) analogs. Both SKIs and their Asp analogs were highly cytotoxic towards multiple human cancer cell lines; in several cases the Asp analogs were up to three times more effective.

View Article and Find Full Text PDF

Sphingosine kinase 1 (SphK1) responds to a variety of growth factor signals by increasing catalytic activity as it translocates to the plasma membrane (PM). Several studies have identified amino acids residues involved in translocation yet how SphK1 increases its catalytic activity remains to be elucidated. Herein, we report that deletion of 21 amino acids from the COOH-terminus of SphK1 (1-363) results in increased catalytic activity relative to wild-type SphK1 (1-384) which is independent of the phosphorylation state of Serine 225 and PMA stimulation.

View Article and Find Full Text PDF

Several studies have demonstrated that sphingosine kinase 1 (SphK1) translocates to the plasma membrane (PM) upon its activation and further suggested the plasma membrane lipid raft microdomain (PMLRM) as a target for SphK1 relocalization. To date, however, direct evidence of SphK1 localization to the PMLRM has been lacking. In this report, using multiple biochemical and subcellular fractionation techniques we demonstrate that endogenous SphK1 protein and its substrate, D-erythro-sphingosine, are present within the PMLRM.

View Article and Find Full Text PDF

Sphingosine kinase 1 (SphK1) is an oncoprotein capable of directly transforming cells and is associated with resistance to chemotherapy and radiotherapy. SphK1 is increased in various human cancers; whereas, blockade restores sensitivity to therapeutic killing in chemotherapy resistant cancer cell lines. We investigated SphK1 expression in clinical tissue samples from patients with non-Hodgkin lymphomas (NHL).

View Article and Find Full Text PDF

Ca2+ signaling plays an important role in endothelial cell (EC) functions including the regulation of barrier integrity. Recently, the endogenous lipid derivative, sphingosine-1-phosphate (S1P), has emerged as an important modulator of EC barrier function. We investigated the role of endogenously generated S1P in Ca2+ metabolism and barrier function in human umbilical endothelial cells (HUVECs) stimulated by thrombin, histamine, or other agonists.

View Article and Find Full Text PDF

Sphingosine kinase 1 (SphK1) is a lipid kinase implicated in mitogenic signaling pathways in vascular smooth muscle cells. We demonstrate that human coronary artery smooth muscle (HCASM) cells require SphK1 for growth and that SphK1 mRNA and protein levels are elevated in PDGF stimulated HCASM cells. To determine the mechanism of PDGF-induced SphK1 expression, we used pharmacological inhibitors of the PI3K/AKT/mTOR signaling pathway.

View Article and Find Full Text PDF

The meprin alpha subunit, a multidomain metalloproteinase, is synthesized as a type I membrane protein and proteolytically cleaved during biosynthesis in the endoplasmic reticulum (ER), consequently losing its membrane attachment and COOH-terminal domains. The meprin alpha subunit is secreted as a disulfide-linked dimer that forms higher oligomers. By contrast, the evolutionarily related meprin beta subunit retains the COOH-terminal domains during biosynthesis and travels to the plasma membrane as a disulfide-linked integral membrane dimer.

View Article and Find Full Text PDF

Meprin A and B are highly regulated, secreted and cell-surface homo- and hetero-oligomeric enzymes. Meprins are abundantly expressed in kidney and intestine. The multidomain alpha and beta subunits have high sequence identity, however they have very different substrate specificities, oligomerization potentials and are differentially regulated.

View Article and Find Full Text PDF