Bone collagenous extracellular matrix provides a confined environment into which apatite crystals form. This biomineralization process is related to a cascade of events partly controlled by noncollagenous proteins. Although overlooked in bone models, concentration and physical environment influence their activities.
View Article and Find Full Text PDFAlthough bone is one of the most studied living materials, many questions about the manner in which bones form remain unresolved, including fine details of the skeletal structure during development. In this study, we monitored skeleton development of zebrafish larvae, using calcein fluorescence, high-resolution micro-CT 3D images and FIB-SEM in the block surface serial imaging mode. We compared calcein staining of the skeletons of the wild type and nacre mutants, which are transparent zebrafish, with micro-CT for the first 30 days post fertilization embryos, and identified significant differences.
View Article and Find Full Text PDFThe understanding of crop domestication is dependent on tracking the original geographical distribution of wild relatives. The faba bean (Vicia faba L.) is economically important in many countries around the world; nevertheless, its origin has been debated because its ancestor could not be securely identified.
View Article and Find Full Text PDFBackground: Amelotin (AMTN) is an ameloblast-secreted protein that belongs to the secretory calcium-binding phosphoprotein (SCPP) family, which originated in early vertebrates. In rodents, AMTN is expressed during the maturation stage of amelogenesis only. This expression pattern strongly differs from the spatiotemporal expression of other ameloblast-secreted SCPPs, such as the enamel matrix proteins (EMPs).
View Article and Find Full Text PDFALPL encodes the tissue nonspecific alkaline phosphatase (TNSALP), which removes phosphate groups from various substrates. Its function is essential for bone and tooth mineralization. In humans, ALPL mutations lead to hypophosphatasia, a genetic disorder characterized by defective bone and/or tooth mineralization.
View Article and Find Full Text PDFAmong persisting questions on bone calcification, a major one is the link between protein expression and mineral deposition. A cell culture system is here proposed opening new integrative studies on biomineralization, improving our knowledge on the role played by non-collagenous proteins in bone. This experimental in vitro model consisted in human primary osteoblasts cultured for 60 days at the surface of a 3D collagen scaffold mimicking an osteoid matrix.
View Article and Find Full Text PDFDentin matrix acidic phosphoprotein 1 (DMP1) is an acidic, highly phosphorylated, noncollagenous protein secreted during dentin and bone formation. Previous functional studies of DMP1 have revealed various motifs playing a role in either mineralization or cell differentiation. We performed an evolutionary analysis of DMP1 to identify residues and motifs that were conserved during 220 millions years (Ma) of mammalian evolution, and hence have an important function.
View Article and Find Full Text PDFDNA is used to rationally build up networks of silica nanoparticles (SiNPs) based on the molecular recognition properties of complementary sequences. Network self-assembly is controlled from DNA covalently grafted at the surface of chemically modified SiNPs. Two strategies are compared, where grafted DNA sequences are designed in a three-strand system using noncomplementary sequences and an extra DNA linker, or in a two-strand approach for direct hybridization.
View Article and Find Full Text PDF