The histone variant H2A.Z plays important functions in the regulation of gene expression. In mammals, it is encoded by two genes, giving rise to two highly related isoforms named H2A.
View Article and Find Full Text PDFThe gastrointestinal tract relies on the production, maturation, and transit of mucin to protect against pathogens and to lubricate the epithelial lining. Although the molecular and cellular mechanisms that regulate mucin production and movement are beginning to be understood, the upstream epithelial signals that contribute to mucin regulation remain unclear. Here, we report that the inflammatory cytokine tumor necrosis factor (TNF), generated by the epithelium, contributes to mucin homeostasis by regulating both cell differentiation and cystic fibrosis transmembrane conductance regulator (CFTR) activity.
View Article and Find Full Text PDFThe intestinal epithelium undergoes continuous renewal and has an exceptional capacity to regenerate after injury. Maintenance and proliferation of intestinal stem cells (ISCs) are regulated by their surrounding niche, largely through Wnt signaling. However, it remains unclear which niche cells produce signals during different injury states, and the role of endothelial cells (ECs) as a component of the ISC niche during homeostasis and after injury has been underappreciated.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
May 2022
The intestinal epithelium undergoes continuous cellular turnover, making it an attractive model to study tissue renewal and regeneration. Intestinal stem cells (ISCs) can both self-renew and differentiate along all epithelial cell lineages. Decisions about which fate to pursue are controlled by a balance between high Wnt signaling at the crypt bottom, where ISCs reside, and increasing bone morphogenetic protein (BMP) levels toward the villus, where differentiated cells are located.
View Article and Find Full Text PDFThe rapid renewal of intestinal epithelium is mediated by a pool of stem cells, located at the bottom of crypts, giving rise to highly proliferative progenitor cells, which in turn differentiate during their migration along the villus. The equilibrium between renewal and differentiation is critical for establishment and maintenance of tissue homeostasis, and is regulated by signaling pathways (Wnt, Notch, Bmp…) and specific transcription factors (TCF4, CDX2…). Such regulation controls intestinal cell identities by modulating the cellular transcriptome.
View Article and Find Full Text PDFThe Tip60/p400 chromatin-modifying complex, which is involved in the incorporation and post-translational modification of the H2A.Z histone variant, regulates cell proliferation and important signaling pathways, such as Wnt. Here, we study the involvement of H2A.
View Article and Find Full Text PDF