Publications by authors named "Jeremie Laydevant"

Ising machines, which are hardware implementations of the Ising model of coupled spins, have been influential in the development of unsupervised learning algorithms at the origins of Artificial Intelligence (AI). However, their application to AI has been limited due to the complexities in matching supervised training methods with Ising machine physics, even though these methods are essential for achieving high accuracy. In this study, we demonstrate an efficient approach to train Ising machines in a supervised way through the Equilibrium Propagation algorithm, achieving comparable results to software-based implementations.

View Article and Find Full Text PDF

Human brains and bodies are not hardware running software: the hardware is the software. We reason that because the physics of artificial intelligence hardware and of human biological "hardware" is distinct, neuromorphic engineers need to be selective in the inspiration we take from neuroscience.

View Article and Find Full Text PDF

A practical limit to energy efficiency in computation is ultimately from noise, with quantum noise [1] as the fundamental floor. Analog physical neural networks [2], which hold promise for improved energy efficiency and speed compared to digital electronic neural networks, are nevertheless typically operated in a relatively high-power regime so that the signal-to-noise ratio (SNR) is large (>10). We study optical neural networks [3] operated in the limit where all layers except the last use only a single photon to cause a neuron activation.

View Article and Find Full Text PDF

Finding spike-based learning algorithms that can be implemented within the local constraints of neuromorphic systems, while achieving high accuracy, remains a formidable challenge. Equilibrium propagation is a promising alternative to backpropagation as it only involves local computations, but hardware-oriented studies have so far focused on rate-based networks. In this work, we develop a spiking neural network algorithm called EqSpike, compatible with neuromorphic systems, which learns by equilibrium propagation.

View Article and Find Full Text PDF