Publications by authors named "Jeremie Gaillard"

The internal organization of cells is largely determined by the architecture and orientation of the microtubule network. Microtubules serve as polar tracks for the selective transport of specific molecular motors toward either their plus or minus ends. How both motors reciprocally move microtubules and organize the network's arrangement and polarity is unknown.

View Article and Find Full Text PDF

The crosstalk between the actin network and microtubules is essential for cell polarity. It orchestrates microtubule organization within the cell, driven by the asymmetry of actin architecture along the cell periphery. The physical intertwining of these networks regulates spatial organization and force distribution in the microtubule network.

View Article and Find Full Text PDF

Microtubule self-repair has been studied both in vitro and in vivo as an underlying mechanism of microtubule stability. The turnover of tubulin dimers along the microtubule has challenged the pre-existing dogma that only growing ends are dynamic. However, although there is clear evidence of tubulin incorporation into the shaft of polymerized microtubules in vitro, the possibility of such events occurring in living cells remains uncertain.

View Article and Find Full Text PDF

Motility assays use surface-immobilized molecular motors to propel cytoskeletal filaments. They have been widely used to characterize motor properties and their impact on cytoskeletal self-organization. Moreover, the motility assays are a promising class of bioinspired active tools for nanotechnological applications.

View Article and Find Full Text PDF

The orientation of cell polarity depends on the position of the centrosome, the main microtubule-organizing center (MTOC). Microtubules (MTs) transmit pushing forces to the MTOC as they grow against the cell periphery. How the actin network regulates these forces remains unclear.

View Article and Find Full Text PDF

Active cytoskeletal materials in vitro demonstrate self-organizing properties similar to those observed in their counterparts in cells. However, the search to emulate phenomena observed in living matter has fallen short of producing a cytoskeletal network that would be structurally stable yet possess adaptive plasticity. Here, we address this challenge by combining cytoskeletal polymers in a composite where self-assembling microtubules and actin filaments collectively self-organize due to the activity of microtubule-percolating molecular motors.

View Article and Find Full Text PDF

Microtubules are dynamic polymers, permanently assembling and disassembling, that serve as tracks for intra-cellular transport by molecular motors. We recently found that the low energy of tubulin dimer interactions allows for spontaneous loss of tubulin dimers from the microtubule lattice [1]. This raised the possibility that the mechanical work produced by molecular motors as they move on microtubules can break dimer interactions and trigger microtubule disassembly.

View Article and Find Full Text PDF
Article Synopsis
  • The nucleus is the sturdiest organelle in a cell, and its deformation is crucial for processes like cell movement, differentiation, and aging.
  • Recent research highlights that nucleus stiffness and shape result from a balance between external forces (like those from the actin network in adherent cells and microtubules in nonadherent cells) and internal resistance mechanisms.
  • The study includes a method for purifying nuclei from nonadherent cells, which allows for the exploration of how nuclei interact with microtubules under various conditions, providing insights into their mechanical behaviors.
View Article and Find Full Text PDF

Since its discovery, several decades ago, microtubule dynamic instability has been the subject of countless studies that demonstrate its impact on cellular behavior in health and disease. Recent studies reveal a new dimension of microtubule dynamics. Microtubules are not only dynamic at their tips but also exhibit loss and incorporation of tubulin subunits along their lattice far from the tips.

View Article and Find Full Text PDF

Tubulins are critical for the internal organization of eukaryotic cells, and understanding their emergence is an important question in eukaryogenesis. Asgard archaea are the closest known prokaryotic relatives to eukaryotes. Here, we elucidated the apo and nucleotide-bound x-ray structures of an Asgard tubulin from hydrothermal living Odinarchaeota (OdinTubulin).

View Article and Find Full Text PDF

Microtubule instability stems from the low energy of tubulin dimer interactions, which sets the growing polymer close to its disassembly conditions. Molecular motors use ATP hydrolysis to produce mechanical work and move on microtubules. This raises the possibility that the mechanical work produced by walking motors can break dimer interactions and trigger microtubule disassembly.

View Article and Find Full Text PDF

Microtubules play a key role in cell division, motility, and intracellular trafficking. Microtubule lattices are generally regarded as stable structures that undergo turnover through dynamic instability of their ends [1]. However, recent evidence suggests that microtubules also exchange tubulin dimers at the sites of lattice defects, which can be induced by mechanical stress, severing enzymes, or occur spontaneously during polymerization [2-6].

View Article and Find Full Text PDF

Microtubules are dynamic polymers, which grow and shrink by addition and removal of tubulin dimers at their extremities. Within the microtubule shaft, dimers adopt a densely packed and highly ordered crystal-like lattice structure, which is generally not considered to be dynamic. Here we report that thermal forces are sufficient to remodel the microtubule shaft, despite its apparent stability.

View Article and Find Full Text PDF

The centrosome is the main microtubule-organizing centre. It also organizes a local network of actin filaments. However, the precise function of the actin network at the centrosome is not well understood.

View Article and Find Full Text PDF

Eukaryotic cells rely on long-lived microtubules for intracellular transport and as compression-bearing elements. We considered that long-lived microtubules are acetylated inside their lumen and that microtubule acetylation may modify microtubule mechanics. Here, we found that tubulin acetylation is required for the mechanical stabilization of long-lived microtubules in cells.

View Article and Find Full Text PDF

The dynamic instability of microtubules is characterized by slow growth phases stochastically interrupted by rapid depolymerizations called catastrophes. Rescue events can arrest the depolymerization and restore microtubule elongation. However, the origin of these rescue events remains unexplained.

View Article and Find Full Text PDF

Cell polarity is required for the functional specialization of many cell types including lymphocytes. A hallmark of cell polarity is the reorientation of the centrosome that allows repositioning of organelles and vesicles in an asymmetric fashion. The mechanisms underlying centrosome polarization are not fully understood.

View Article and Find Full Text PDF

Microtubules and actin filaments are the two main cytoskeleton networks supporting intracellular architecture and cell polarity. The centrosome nucleates and anchors microtubules and is therefore considered to be the main microtubule-organizing centre. However, recurring, yet unexplained, observations have pointed towards a connection between the centrosome and actin filaments.

View Article and Find Full Text PDF

Microtubules--which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport--can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release.

View Article and Find Full Text PDF

Molecular motors play critical roles in the formation of mitotic spindles, either through controlling the stability of individual microtubules, or by crosslinking and sliding microtubule arrays. Kinesin-8 motors are best known for their regulatory roles in controlling microtubule dynamics. They contain microtubule-destabilizing activities, and restrict spindle length in a wide variety of cell types and organisms.

View Article and Find Full Text PDF

The spatial organization of the microtubule (MT) network directs cell polarity and mitosis. It is finely regulated by hundreds of different types of microtubule-associated proteins and molecular motors whose specific functions are difficult to investigate directly in cells. Here, we have investigated their functions using geometrically controlled MT networks in vitro in cell-free assay.

View Article and Find Full Text PDF

A number of cellular processes use both microtubules and actin filaments, but the molecular machinery linking these two cytoskeletal elements remains to be elucidated in detail. Formins are actin-binding proteins that have multiple effects on actin dynamics, and one formin, mDia2, has been shown to bind and stabilize microtubules through its formin homology 2 (FH2) domain. Here we show that three formins, INF2, mDia1, and mDia2, display important differences in their interactions with microtubules and actin.

View Article and Find Full Text PDF

The acentrosomal plant mitotic spindle is uniquely structured in that it lacks opposing centrosomes at its poles and is equipped with a connective preprophase band that regulates the spatial framework for spindle orientation and mobility. These features are supported by specialized microtubule-associated proteins and motors. Here, we show that Arabidopsis thaliana MAP65-4, a non-motor microtubule associated protein (MAP) that belongs to the evolutionarily conserved MAP65 family, specifically associates with the forming mitotic spindle during prophase and with the kinetochore fibers from prometaphase to the end of anaphase.

View Article and Find Full Text PDF

The Arabidopsis MAP65s are a protein family with similarity to the microtubule-associated proteins PRC1/Ase1p that accumulate in the spindle midzone during late anaphase in mammals and yeast, respectively. Here we investigate the molecular and functional properties of AtMAP65-5 and improve our understanding of AtMAP65-1 properties. We demonstrate that, in vitro, both proteins promote the formation of a planar network of antiparallel microtubules.

View Article and Find Full Text PDF

Katanin is a heterodimeric protein that mediates ATP-dependent destabilization of microtubules in animal cells. In plants, the catalytic subunit of Arabidopsis thaliana katanin (AtKSS, Arabidopsis thaliana Katanin Small Subunit) has been identified and its microtubule-severing activity has been demonstrated in vitro. In vivo, plant katanin plays a role in the organization of cortical microtubules, but the way it achieves this function is unknown.

View Article and Find Full Text PDF