Publications by authors named "Jeremie B Fant"

Land-use change and habitat fragmentation are threats to biodiversity. The decrease in available habitat, increase in isolation, and mating within populations can lead to elevated inbreeding, lower genetic diversity, and poor fitness. Here we investigate the genetics of two rare and threatened plant species, and , and we compare them to a widespread congener .

View Article and Find Full Text PDF

Selection on floral traits by animal pollinators is important in the evolution of flowering plants, yet whether floral divergence requires specialized pollination remains uncertain. Longer floral tubes, a trait associated with long-tongued pollinators, can also exclude other pollinators from accessing rewards, a potential mechanism for specialization. Across most of its range, displays much longer corollas than most species, though tube length varies geographically and correlates partially with hawkmoth visitation.

View Article and Find Full Text PDF

Background: The evening primrose family (Onagraceae) includes 664 species (803 taxa) with a center of diversity in the Americas, especially western North America. Ongoing research in Onagraceae includes exploring striking variation in floral morphology, scent composition, and breeding system, as well as the role of these traits in driving diversity among plants and their interacting pollinators and herbivores. However, these efforts are limited by the lack of a comprehensive, well-resolved phylogeny.

View Article and Find Full Text PDF

Premise: Animal pollinators play an important role in pollen dispersal. Here, we assessed differences in pollen and seed dispersal and the role of pollinator functional groups with different foraging behaviors in generating patterns of genetic diversity over similar geographic ranges for two closely related taxa. We focused on two members of Oenothera section Calylophus (Onagraceae) that co-occur on gypsum outcrops throughout the northern Chihuahuan Desert but differ in floral phenotype and primary pollinator: Oenothera gayleana (bee) and O.

View Article and Find Full Text PDF

Premise: Phenological variation among individuals within populations is common and has a variety of ecological and evolutionary consequences, including forming the basis for population-level responses to environmental change. Although the timing of life-cycle events has genetic underpinnings, whether intraspecific variation in the duration of life-cycle events reflects genetic differences among individuals is poorly understood.

Methods: We used a common garden experiment with 10 genotypes of Salix hookeriana (coastal willow) from northern California, United States to investigate the extent to which genetic variation explains intraspecific variation in the timing and duration of multiple, sequential life-cycle events: flowering, leaf budbreak, leaf expansion, fruiting, and fall leaf coloration.

View Article and Find Full Text PDF

Premise: Living collections maintained for generations are at risk of diversity loss, inbreeding, and adaptation to cultivation. To address these concerns, the zoo community uses pedigrees to track individuals and implement crosses that maximize founder contributions and minimize inbreeding. Using a pedigree management approach, we demonstrate how conducting strategic crosses can minimize genetic issues that have arisen under current practices.

View Article and Find Full Text PDF

Premise: To avoid inbreeding depression, plants have evolved diverse breeding systems to favor outcrossing, such as self-incompatibility. However, changes in biotic and abiotic conditions can result in selective pressures that lead to a breakdown in self-incompatibility. The shift to increased selfing is commonly associated with reduced floral features, lower attractiveness to pollinators, and increased inbreeding.

View Article and Find Full Text PDF

Oenothera sect. Calylophus is a North American group of 13 recognized taxa in the evening primrose family (Onagraceae) with an evolutionary history that may include independent origins of bee pollination, edaphic endemism, and permanent translocation heterozygosity. Like other groups that radiated relatively recently and rapidly, taxon boundaries within Oenothera sect.

View Article and Find Full Text PDF

Background: Plant volatiles play an important role in both plant-pollinator and plant-herbivore interactions. Intraspecific polymorphisms in volatile production are ubiquitous, but studies that explore underlying differential gene expression are rare. Oenothera harringtonii populations are polymorphic in floral emission of the monoterpene (R)-(-)-linalool; some plants emit (R)-(-)-linalool (linalool+ plants) while others do not (linalool- plants).

View Article and Find Full Text PDF

Premise: Divergence depends on the strength of selection and frequency of gene flow between taxa, while reproductive isolation relies on mating barriers and geographic distance. Less is known about how these processes interact at early stages of speciation. Here, we compared population-level differentiation in floral phenotype and genetic sequence variation among recently diverged Castilleja to explore patterns of diversification under different scenarios of reproductive isolation.

View Article and Find Full Text PDF

Maintaining a living plant collection is the most common method of ex situ conservation for plant species that cannot be seed banked (i.e., exceptional species).

View Article and Find Full Text PDF
Article Synopsis
  • Microsatellite markers were created to assess genetic diversity and relationships in ex situ collections of the Campanulaceae family.
  • A total of 40 potential markers were tested on individuals from two species and evaluated for cross-species use across various genera in the Hawai'ian lobelioid group.
  • The study concludes that these primers are effective for measuring genetic diversity and relatedness, and they are broadly applicable for population genetic research within the Hawai'ian lobelioid group.
View Article and Find Full Text PDF

Populations of scarlet Indian paintbrush (Castilleja coccinea) in the Midwestern United States exhibit a bract color polymorphism, with each population having predominantly yellow or scarlet bracts. We investigated a possible mechanism for this maintenance of bract color polymorphism in C. coccinea by conducting hand-pollination experiments in two nearby populations, one predominantly yellow and one predominantly scarlet.

View Article and Find Full Text PDF

The occurrence and extent of multiple paternity is an important component of variation in plant mating dynamics. However, links between pollinator activity and multiple paternity are generally lacking, especially for plant species that attract functionally diverse floral visitors. In this study, we separated the influence of two functionally distinct floral visitors (hawkmoths and solitary bees) and characterized their impacts on multiple paternity in a self-incompatible, annual forb, Oenothera harringtonii (Onagraceae).

View Article and Find Full Text PDF

Premise Of The Study: Land-use change is cited as a primary driver of global biodiversity loss, with myriad consequences for species, populations, and ecosystems. However, few studies have examined its impact on species interactions, particularly pollination. Furthermore, when the effects of land-use change on pollination have been studied, the focus has largely been on species pollinated by diurnal pollinators, namely, bees and butterflies.

View Article and Find Full Text PDF

Premise Of The Study: Eleven nuclear and four plastid microsatellite markers were screened for two gypsum endemic species, Oenothera gayleana and O. hartwegii subsp. filifolia, and tested for cross-amplification in the remaining 11 taxa within Oenothera sect.

View Article and Find Full Text PDF

Identifying factors that shape the spatial distribution of genetic variation is crucial to understanding many population- and landscape-level processes. In this study, we explore fine-scale spatial genetic structure in Oenothera harringtonii (Onagraceae), an insect-pollinated, gravity-dispersed herb endemic to the grasslands of south-central and southeastern Colorado, USA. We genotyped 315 individuals with 11 microsatellite markers and utilized a combination of spatial autocorrelation analyses and landscape genetic models to relate life history traits and landscape features to dispersal processes.

View Article and Find Full Text PDF

Premise Of The Study: Microsatellite primers were developed in the hemiparasitic perennial forb Castilleja sessiliflora to investigate patterns of gene flow and genetic diversity within and among populations. •

Methods And Results: Twelve polymorphic loci were identified in C. sessiliflora and tested on three populations (32 individuals each) sampled across the range of the species.

View Article and Find Full Text PDF

Premise Of The Study: Microsatellite markers were developed in the annual herb, Oenothera harringtonii, to investigate patterns of genetic diversity, gene flow, and parentage within and among populations of this Colorado endemic.

Methods And Results: Ten polymorphic loci were identified in O. harringtonii and tested in four populations sampled across the range of the species.

View Article and Find Full Text PDF

Premise Of The Study: Despite rapid growth in the field of landscape genetics, our understanding of how landscape features interact with life history traits to influence population genetic structure in plant species remains limited. Here, we identify population genetic divergence in three species of Penstemon (Plantaginaceae) similarly distributed throughout the Great Basin region of the western United States but with different pollination syndromes (bee and hummingbird). The Great Basin's mountainous landscape provides an ideal setting to compare the interaction of landscape and dispersal ability in isolating populations of different species.

View Article and Find Full Text PDF