Aquatic invertebrates exposed to pesticides may develop pesticide resistance. Based on a meta-analysis we revealed environmental factors driving the magnitude of resistance in the freshwater amphipod Gammarus pulex in the field. We showed that (i) insecticide tolerance of G.
View Article and Find Full Text PDFPesticide exposure in agricultural streams requires non-target species to adapt. However, pesticides may reduce performance in between exposure events due to long-term effects and physiological fitness costs of adaptation. Here, we investigated the long-term consequences of pesticide exposure to low concentrations in the widespread crustacean Gammarus pulex.
View Article and Find Full Text PDFThe European regulatory framework for pesticides generally applies an assessment factor of up to 100 below the acute median lethal concentration (LC50) in laboratory tests to predict the regulatory acceptable concentrations (RACs). However, long-term detrimental effects of pesticides in the environment occur far below the RACs. Here, we explored the metabolic changes induced by exposure to the neonicotinoid insecticide clothianidin in larvae of the mosquito Culex pipiens.
View Article and Find Full Text PDFRisk assessments of toxicants in aquatic environments are typically based on the evaluation of concentrations in water or sediment. However, concentrations in water are highly variable, while the body burden may provide a better time-integrated measure of pesticide exposure and potential effects in aquatic organisms. Here, we quantified pesticide body burdens in a dominant invertebrate species from agricultural streams, Gammarus pulex, compared them with pesticide concentrations in water samples, and linked the pesticide contamination with observed ecological effects on macroinvertebrate communities.
View Article and Find Full Text PDFExposure to pesticides affects non-target aquatic communities, with substantial consequences on ecosystem services. Adaptation of exposed populations may reduce the effects of pesticides. However, it is not known under which conditions adaptation occurs when only a low toxic pressure from pesticides is present.
View Article and Find Full Text PDFFrequent pesticide-related impacts on ecosystems at concentrations considered environmentally safe indicate that the current risk assessment framework for registration of pesticides is not protective enough. Causes may include difficulties in assessing the effects of sequential pesticide pulses and their interaction with environmental stressors. By contrast to such realistic scenarios, risk assessment for registration of pesticides is typically based on tests of a single exposure period under benign laboratory conditions.
View Article and Find Full Text PDFEnvironmental toxicants such as pesticides exert strong selection pressure on many species. While the resulting development of pesticide resistance in agricultural pest species is well-known, reports on the extent of adaptation in exposed nontarget species are contradictory. These contradictory reports highlight a continuing challenge in understanding the relevant ecological mechanisms that facilitate or hinder adaptation to toxicants in the field.
View Article and Find Full Text PDFThe genetic recovery of resistant populations released from pesticide exposure is accelerated by the presence of environmental stressors. By contrast, the relevance of environmental stressors for the spread of resistance during pesticide exposure has not been studied. Moreover, the consequences of interactions between different stressors have not been considered.
View Article and Find Full Text PDF